Câu hỏi:

31/01/2025 331 Lưu

Xét hai mệnh đề:

(I) f(x) có đạo hàm tại x0 thì f(x) liên tục tại x0

(II) f(x) liên tục tại x0 thì f(x) có đạo hàm tại x0

Mệnh đề nào đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(I) hiển nhiên đúng.

(II) sai.

Ví dụ: Xét hàm số \[{\rm{f}}\left( {\rm{x}} \right){\rm{ = }}\left| {\rm{x}} \right|\] ta có

\[\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{x}}_0}} {\rm{ = }}\left| {{{\rm{x}}_{\rm{0}}}} \right|{\rm{ = f}}\left( {{{\rm{x}}_{\rm{0}}}} \right) \Rightarrow \] Hàm số liên tục tại trên R. Tuy nhiên hàm số không có đạo hàm tại x = 0

\(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to {0^{}}} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^{}}} \frac{{\left| x \right|}}{x}\)

\(\left\{ {\begin{array}{*{20}{c}}{\mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right|}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{x} = 1}\\{\mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right|}}{x} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - x}}{x} = - 1}\end{array}} \right. \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right|}}{x} \ne \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right|}}{x}\)

Không tồn tại đạo hàm của hàm số tại x = 0.  

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \left( {{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}}} \right){\rm{ = a + b = f}}\left( {\rm{1}} \right)\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \left( {{\rm{2x}} - 1} \right) = 1\]

Để hàm số liên tục tại x = 1 thì \[\mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right){\rm{ = f}}\left( {\rm{1}} \right) \Leftrightarrow {\rm{a + b = 1}}\,\,\,\left( {\rm{1}} \right)\]

Khi đó ta có: \[{\rm{f'}}\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}{{\rm{x}}^{\rm{2}}}{\rm{ + bx}} - \left( {{\rm{a + b}}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}\left( {{{\rm{x}}^{\rm{2}}} - {\rm{1}}} \right){\rm{ + b}}\left( {{\rm{x}} - {\rm{1}}} \right)}}{{{\rm{x}} - {\rm{1}}}}\]

\[ = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \left[ {{\rm{a}}\left( {{\rm{x + 1}}} \right){\rm{ + b}}} \right] = {\rm{2a + b}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{\rm{2x}} - {\rm{1}} - \left( {{\rm{a + b}}} \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{2{\rm{x}} - 2}}{{{\rm{x}} - 1}} = 2\]

Để hàm số có đạo hàm tại x = 1 thì

\[{\rm{f'}}\left( 1 \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( 1 \right)}}{{{\rm{x}} - 1}} \Leftrightarrow {\rm{2a + b}} = 2\,\,\,\left( 2 \right)\]

Từ (1) và (2) ta có hệ: \(\left\{ {\begin{array}{*{20}{c}}{a + b = 1}\\{2a + b = 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 0}\end{array}} \right.} \right.\)

Đáp án cần chọn là: C

Lời giải

Để hàm số có đạo hàm của hàm số tại điểm x = 1 thì trước hết hàm số phải liên tục tại x = 1, tức là \[\mathop {\lim }\limits_{{\rm{x}} \to 1} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( 1 \right) \Leftrightarrow \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{{\rm{x}}^2} - 1}}{{{\rm{x}} - 1}} = {\rm{a}} \Leftrightarrow \mathop {\lim }\limits_{{\rm{x}} \to 1} \left( {{\rm{x + 1}}} \right){\rm{ = a}} \Leftrightarrow 2 = {\rm{a}}\]

Khi đó hàm số có dạng: \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1}\\{2\,\,khi\,\,x = 1}\end{array}} \right.\)

\[ \Rightarrow {\rm{f'}}\left( {\rm{1}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{\frac{{{{\rm{x}}^2} - 1}}{{{\rm{x}} - 1}} - 2}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to 1} \frac{{{\rm{x}} + 1 - 2}}{{{\rm{x}} - 1}} = 1\]

Vậy a = 2.

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP