Câu hỏi:

31/01/2025 19

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2}}}{2}\,\,khi\,\,x \le 1}\\{ax + b\,\,khi\,\,x > 1}\end{array}} \right.\). Tìm tất cả các giá trị của các tham số a, b sao cho f(x) có đạo hàm tại điểm x = 1.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hàm số có đạo hàm tại x = 1, do đó hàm số liên tục tại x = 1.

\[ \Rightarrow \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( 1 \right) \Leftrightarrow \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \left( {{\rm{ax + b}}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{2}}} = \frac{1}{2} \Leftrightarrow {\rm{a + b}} = \frac{1}{2}\] (1)

Ta có \[\mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{ax + b}} - \left( {{\rm{a}}{\rm{.1 + b}}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{a}}\left( {{\rm{x}} - {\rm{1}}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} {\rm{a = a}}\]

\[\mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{\frac{{{{\rm{x}}^2}}}{2} - \frac{1}{2}}}{{{\rm{x}} - 1}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{\left( {{\rm{x + 1}}} \right)\left( {{\rm{x}} - {\rm{1}}} \right)}}{{{\rm{2}}\left( {{\rm{x}} - {\rm{1}}} \right)}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{\left( {{\rm{x}} + 1} \right)}}{2} = 1\]

Hàm số có đạo hàm tại \[{\rm{x}} = 1 \Leftrightarrow \mathop {\lim }\limits_{{\rm{x}} \to {1^ + }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} = \mathop {\lim }\limits_{{\rm{x}} \to {1^ - }} \frac{{{\rm{f}}\left( {\rm{x}} \right) - {\rm{f}}\left( {\rm{1}} \right)}}{{{\rm{x}} - {\rm{1}}}} \Leftrightarrow {\rm{a}} = 1\] (2)

Từ (1) và (2), ta có \[{\rm{a}} = 1,\;{\rm{b}} = - \frac{1}{2}\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xét hai hàm số: \[\left( {\rm{I}} \right){\rm{: f}}\left( {\rm{x}} \right){\rm{ = }}\left| {\rm{x}} \right|{\rm{x,}}\,\,\left( {{\rm{II}}} \right){\rm{: g}}\left( {\rm{x}} \right){\rm{ = }}\sqrt {\rm{x}} \] . Hàm số có đạo hàm tại x = 0  là:

Xem đáp án » 31/01/2025 42

Câu 2:

Trong các phát biểu sau, phát biểu nào sau đây là đúng?

Xem đáp án » 31/01/2025 29

Câu 3:

Tìm a để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x - 1}}\,\,khi\,\,x \ne 1}\\{a\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 1}\end{array}} \right.\) có đạo hàm tại x = 1.

Xem đáp án » 31/01/2025 29

Câu 4:

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{a{x^2} + bx\,\,khi\,\,x \ge 1}\\{2x - 1\,\,khi\,\,x < 1}\end{array}} \right.\). Tìm a, b để hàm số có đạo hàm tại x = 1.

Xem đáp án » 31/01/2025 29

Câu 5:

Cho đồ thị hàm số y = f(x) như hình vẽ. Mệnh đề nào sau đây sai?

Xem đáp án » 31/01/2025 25

Câu 6:

Cho hàm số \(f\left( x \right)\left\{ {\begin{array}{*{20}{c}}{\frac{{{x^3} - 4{x^2} + 3x}}{{{x^2} - 3x + 2}}\,\,\,khi\,\,x \ne 1}\\{0\,\,khi\,\,x = 1}\end{array}} \right.\). Giá trị của f′(1) bằng:

Xem đáp án » 31/01/2025 20

Câu 7:

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt x \,\,khi\,\,x > 1}\\{{x^2}\,\,khi\,\,x \le 1}\end{array}} \right.\). Tính f′(1) ?

Xem đáp án » 31/01/2025 19

Bình luận


Bình luận