Câu hỏi:

19/08/2025 124 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):{y^2} = 2px\left( {p > 0} \right)\). Biết khoảng cách từ tiêu điểm \(F\) đến đường thẳng \(\Delta :x + y - 12 = 0\) bằng \(2\sqrt 2 \). Tính tổng các giá trị của \(p\) thỏa mãn đề bài.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 48

Ta có \(F\left( {\frac{p}{2};0} \right)\).

Ta có \(d\left( {F,\Delta } \right) = \frac{{\left| {\frac{p}{2} - 12} \right|}}{{\sqrt 2 }} = 2\sqrt 2 \)\( \Leftrightarrow \left| {\frac{p}{2} - 12} \right| = 4\)\( \Leftrightarrow \left[ \begin{array}{l}\frac{p}{2} = 16\\\frac{p}{2} = 8\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}p = 32\\p = 16\end{array} \right.\).

Do đó tổng các giá trị của \(p\) là 48.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(BM = 7 - x\) (điều kiện \(0 < x < 7\))

Xét \(\Delta ABM\) ta có \(AM = \sqrt {A{B^2} + B{M^2}} = \sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} \).

Theo đề ta có \(\frac{{\sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} }}{6} = \frac{x}{{10}}\).

Bình phương hai vế phương trình ta được \(\frac{{65 - 14x + {x^2}}}{{36}} = \frac{{{x^2}}}{{100}}\)\( \Leftrightarrow 1625 - 350x + 25{x^2} = 9{x^2}\)

\( \Leftrightarrow 1625 - 350x + 16{x^2} = 0\)\( \Leftrightarrow x \approx 15,2\) hoặc \(x \approx 6,7\).

Thử lại ta thấy giá trị 6,7 thỏa mãn.

Vậy hai người gặp nhau ở vị trí M cách C một khoảng 6,7 km.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP