Câu hỏi:

10/02/2025 948

Trong mặt phẳng tọa độ \(Oxy\), cho đường thẳng \[\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y = - 1 + t\end{array} \right.\left( {t \in \mathbb{R}} \right)\] và điểm \(M\left( { - 1;6} \right)\). Phương trình đường thẳng đi qua \(M\) và vuông góc với \(\Delta \) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có \(\overrightarrow {{u_\Delta }} = \left( {3;1} \right)\)là một vectơ chỉ phương của đường thẳng \(\Delta \).

Giả sử \(d\) là đường thẳng đi qua \(M\) và vuông góc với \(\Delta \) nhận \(\overrightarrow {{u_\Delta }} = \left( {3;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3\left( {x + 1} \right) + \left( {y - 6} \right) = 0\)\( \Leftrightarrow 3x + y - 3 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) S

Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 1} \right);R = 2\).

a) Ta có \(IA = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 1 + 1} \right)}^2}} = 2 = R\). Suy ra điểm \(A\) thuộc đường tròn.

b) Ta có \(IB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {3 + 1} \right)}^2}} = 2\sqrt 5 > R\). Suy ra điểm \(B\) nằm ngoài đường tròn.

c) Có \(\overrightarrow {IA} = \left( { - 2;0} \right)\).

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(A\) đi qua \(A\left( {1; - 1} \right)\) và nhận \(\overrightarrow n = \left( { - 1;0} \right)\) làm vectơ pháp tuyến có phương trình là \( - \left( {x - 1} \right) = 0 \Leftrightarrow x = 1\).

d) Giả sử tiếp tuyến qua \(B\) nhận \(\overrightarrow n = \left( {a;b} \right)\) làm vectơ pháp tuyến có phương trình là

\(a\left( {x - 1} \right) + b\left( {y - 3} \right) = 0\)\( \Leftrightarrow ax + by - a - 3b = 0\;\left( {\rm{d}} \right)\).

\(d\left( {I,\left( d \right)} \right) = R\)\( \Leftrightarrow \frac{{\left| {a.3 + b.\left( { - 1} \right) - a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| {2a - 4b} \right| = 2\sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow \left| {a - 2b} \right| = \sqrt {{a^2} + {b^2}} \)

\( \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) = {a^2} + {b^2}\)\( \Leftrightarrow - 4ab + 3{b^2} = 0\)\( \Leftrightarrow b\left( {3b - 4a} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}b = 0\\a = \frac{3}{4}b\end{array} \right.\).

TH1: \(b = 0\) chọn \(a = 1\). Suy ra phương trình tiếp tuyến cần tìm là \(x - 1 = 0\).

TH2: Chọn \(b = 4 \Rightarrow a = 3\). Suy ra phương trình tiếp tuyến cần tìm là \(3x + 4y - 15 = 0\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP