Câu hỏi:

10/02/2025 3,573

Một elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\) với bán trục lớn \(a\), bán tiêu cự \(c\) thì tỉ số \(e = \frac{c}{a}\) được gọi là tâm sai của elip. Quỹ đạo của trái đất quay quanh mặt trời là một elip \(\left( E \right)\), trong đó mặt trời là một trong các tiêu điểm. Biết khoảng cách nhỏ nhất và lớn nhất giữa mặt trời và trái đất lần lượt là 147 triệu km và 152 triệu km. Tìm tâm sai của elip \(\left( E \right)\).

Một elip \(\left( E \right):\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\) với bán trục (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo đề ta có \(\left\{ \begin{array}{l}a - c = 147\\a + c = 152\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{299}}{2}\\c = \frac{5}{2}\end{array} \right.\).

Tâm sai của elip \(\left( E \right)\)\(e = \frac{c}{a} = \frac{5}{2}:\frac{{299}}{2} = \frac{5}{{299}}\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) S

Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 1} \right);R = 2\).

a) Ta có \(IA = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 1 + 1} \right)}^2}} = 2 = R\). Suy ra điểm \(A\) thuộc đường tròn.

b) Ta có \(IB = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {3 + 1} \right)}^2}} = 2\sqrt 5 > R\). Suy ra điểm \(B\) nằm ngoài đường tròn.

c) Có \(\overrightarrow {IA} = \left( { - 2;0} \right)\).

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(A\) đi qua \(A\left( {1; - 1} \right)\) và nhận \(\overrightarrow n = \left( { - 1;0} \right)\) làm vectơ pháp tuyến có phương trình là \( - \left( {x - 1} \right) = 0 \Leftrightarrow x = 1\).

d) Giả sử tiếp tuyến qua \(B\) nhận \(\overrightarrow n = \left( {a;b} \right)\) làm vectơ pháp tuyến có phương trình là

\(a\left( {x - 1} \right) + b\left( {y - 3} \right) = 0\)\( \Leftrightarrow ax + by - a - 3b = 0\;\left( {\rm{d}} \right)\).

\(d\left( {I,\left( d \right)} \right) = R\)\( \Leftrightarrow \frac{{\left| {a.3 + b.\left( { - 1} \right) - a - 3b} \right|}}{{\sqrt {{a^2} + {b^2}} }} = 2\)\( \Leftrightarrow \left| {2a - 4b} \right| = 2\sqrt {{a^2} + {b^2}} \)\( \Leftrightarrow \left| {a - 2b} \right| = \sqrt {{a^2} + {b^2}} \)

\( \Leftrightarrow \left( {{a^2} - 4ab + 4{b^2}} \right) = {a^2} + {b^2}\)\( \Leftrightarrow - 4ab + 3{b^2} = 0\)\( \Leftrightarrow b\left( {3b - 4a} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}b = 0\\a = \frac{3}{4}b\end{array} \right.\).

TH1: \(b = 0\) chọn \(a = 1\). Suy ra phương trình tiếp tuyến cần tìm là \(x - 1 = 0\).

TH2: Chọn \(b = 4 \Rightarrow a = 3\). Suy ra phương trình tiếp tuyến cần tìm là \(3x + 4y - 15 = 0\).

Lời giải

Theo đề ta có \(BM = 7 - x\) (điều kiện \(0 < x < 7\))

Xét \(\Delta ABM\) ta có \(AM = \sqrt {A{B^2} + B{M^2}} = \sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} \).

Theo đề ta có \(\frac{{\sqrt {{4^2} + {{\left( {7 - x} \right)}^2}} }}{6} = \frac{x}{{10}}\).

Bình phương hai vế phương trình ta được \(\frac{{65 - 14x + {x^2}}}{{36}} = \frac{{{x^2}}}{{100}}\)\( \Leftrightarrow 1625 - 350x + 25{x^2} = 9{x^2}\)

\( \Leftrightarrow 1625 - 350x + 16{x^2} = 0\)\( \Leftrightarrow x \approx 15,2\) hoặc \(x \approx 6,7\).

Thử lại ta thấy giá trị 6,7 thỏa mãn.

Vậy hai người gặp nhau ở vị trí M cách C một khoảng 6,7 km.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP