Câu hỏi:

10/03/2025 549 Lưu

B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 13 đến câu 14. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 10\) và đường thẳng \(\Delta :3x - 4y - 1 = 0\).

a) Đường thẳng \(\Delta \) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3; - 4} \right)\).

b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).

c) Phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\left( {4;1} \right)\) là \(x + 3y + 3 = 0\).

d) Khoảng cách từ điểm \(M\left( {3;4} \right)\) đến đường thẳng \(\Delta \) bằng \(\frac{8}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) Đ, c) S, d) Đ

a) Đường thẳng \(\Delta \) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3; - 4} \right)\).

b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).

c) Phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\left( {4;1} \right)\) nhận \(\overrightarrow {IA} = \left( {1;3} \right)\) làm vectơ pháp tuyến có phương trình là \(\left( {x - 4} \right) + 3\left( {y - 1} \right) = 0\)\( \Leftrightarrow x + 3y - 7 = 0\).

d) Ta có \(d\left( {M,\Delta } \right) = \frac{{\left| {3.3 - 4.4 - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = \frac{8}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(P\left( \emptyset \right) = 0\).

B. \(0 < P\left( A \right) < 1\).

C. \(P\left( \Omega \right) = 1\).

D. \(P\left( A \right) + P\left( {\overline A } \right) = 1\).

Lời giải

Đáp án đúng là: B

\(0 \le P\left( A \right) \le 1\).

Câu 2

A. \(x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

B. \(x \in \left( {0;2} \right)\).

C. \(x \in \mathbb{R}\).

D. \(x \in \left( {2; + \infty } \right)\).

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP