CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

\(P\left( A \right) = 1 \Leftrightarrow A = \Omega \).

Lời giải

Hướng dẫn giải

Vì \(M \in d\) nên \(M\left( {2t + 2;t} \right)\).

Ta có \(\overrightarrow {MA} = \left( {1 - 2t;4 - t} \right);\overrightarrow {MB} = \left( { - 3 - 2t;2 - t} \right);\overrightarrow {MC} = \left( { - 2t - 2;1 - t} \right)\).

Suy ra \(\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} = \left( { - 4t + 1; - 2t + 3} \right)\).

Do đó \(\left| {\overrightarrow {MA} - 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right| = \sqrt {{{\left( { - 4t + 1} \right)}^2} + {{\left( { - 2t + 3} \right)}^2}} \)\( = \sqrt {20{t^2} - 20t + 10} \)\( = \sqrt {20{{\left( {t - \frac{1}{2}} \right)}^2} + 5} \ge \sqrt 5 \).

Vậy giá trị nhỏ nhất của \(T\) là \(\sqrt 5 \) khi \(t = \frac{1}{2}\).

Với \(t = \frac{1}{2}\) thì \(M\left( {3;\frac{1}{2}} \right)\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP