Khai triển nhị thức \({\left( {2{x^2} - \frac{1}{2}} \right)^5}\) ta được số hạng chứa \({x^6}\) là:
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có
\({\left( {2{x^2} - \frac{1}{2}} \right)^5} = {\left( {2{x^2}} \right)^5} - 5.{\left( {2{x^2}} \right)^4}.\frac{1}{2} + 10.{\left( {2{x^2}} \right)^3}.{\left( {\frac{1}{2}} \right)^2} - 10.{\left( {2{x^2}} \right)^2}.{\left( {\frac{1}{2}} \right)^3} + 5.\left( {2{x^2}} \right).{\left( {\frac{1}{2}} \right)^4} - {\left( {\frac{1}{2}} \right)^5}\)
\( = 32{x^{10}} - 40{x^8} + 20{x^6} - 5{x^4} + \frac{5}{8}{x^2} - \frac{1}{{32}}\).
Suy ra số hạng chứa \({x^6}\) là \(20{x^6}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Đ, b) S, c) S, d) Đ
a) \(n\left( \Omega \right) = 6.6 = 36\).
b) Có \(A = \left\{ {\left( {1;1} \right);\left( {2;2} \right);\left( {3;3} \right);\left( {4;4} \right);\left( {5;5} \right);\left( {6;6} \right)} \right\}\). Suy ra \(n\left( A \right) = 6\).
c) Gọi biến cố \(\overline B \): “Không xuất hiện mặt 6 chấm”.
Ta có \(n\left( {\overline B } \right) = 5.5 = 25\). Suy ra \(P\left( {\overline B } \right) = \frac{{25}}{{36}}\).
Do đó \(P\left( B \right) = 1 - P\left( {\overline B } \right) = \frac{{11}}{{36}}\).
d) Ta có \(C = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;3} \right);\left( {4;2} \right);\left( {3;1} \right)} \right\}\).
Suy ra \(n\left( C \right) = 8\). Do đó \(P\left( C \right) = \frac{8}{{36}} = \frac{2}{9}\).
Lời giải
Hướng dẫn giải
Trả lời: 750
Gọi số tự nhiên gồm 4 chữ số là \(\overline {abcd} \).
Th1: \(d = 0\).
\(d:\) có 1 cách chọn.
\(a,b,c:\) có \(A_7^3 = 210\). Do đó trong trường hợp này lập được 210 số.
Th2: \(d \in \left\{ {2;4;6} \right\}\).
\(d\): có 3 cách chọn.
\(a:\) có 6 cách chọn.
\(b,c:\) có \(A_6^2\).
Do đó trong trường hợp này có \(3.6.A_6^2 = 540\) số.
Vậy có tất cả \(210 + 540 = 750\) số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.