Câu hỏi:

10/03/2025 247

Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 10\) và đường thẳng \(\Delta :3x - 4y - 1 = 0\).

a) Đường thẳng \(\Delta \) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3; - 4} \right)\).

b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).

c) Phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\left( {4;1} \right)\) là \(x + 3y + 3 = 0\).

d) Khoảng cách từ điểm \(M\left( {3;4} \right)\) đến đường thẳng \(\Delta \) bằng \(\frac{8}{5}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Đ, b) Đ, c) S, d) Đ

a) Đường thẳng \(\Delta \) có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3; - 4} \right)\).

b) Đường tròn \(\left( C \right)\) có tâm \(I\left( {3; - 2} \right)\).

c) Phương trình tiếp tuyến của đường tròn \(\left( C \right)\) tại điểm \(A\left( {4;1} \right)\) nhận \(\overrightarrow {IA} = \left( {1;3} \right)\) làm vectơ pháp tuyến có phương trình là \(\left( {x - 4} \right) + 3\left( {y - 1} \right) = 0\)\( \Leftrightarrow x + 3y - 7 = 0\).

d) Ta có \(d\left( {M,\Delta } \right) = \frac{{\left| {3.3 - 4.4 - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 4} \right)}^2}} }} = \frac{8}{5}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ, b) S, c) S, d) Đ

a) \(n\left( \Omega \right) = 6.6 = 36\).

b) Có \(A = \left\{ {\left( {1;1} \right);\left( {2;2} \right);\left( {3;3} \right);\left( {4;4} \right);\left( {5;5} \right);\left( {6;6} \right)} \right\}\). Suy ra \(n\left( A \right) = 6\).

c) Gọi biến cố \(\overline B \): “Không xuất hiện mặt 6 chấm”.

Ta có \(n\left( {\overline B } \right) = 5.5 = 25\). Suy ra \(P\left( {\overline B } \right) = \frac{{25}}{{36}}\).

Do đó \(P\left( B \right) = 1 - P\left( {\overline B } \right) = \frac{{11}}{{36}}\).

d) Ta có \(C = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {6;4} \right);\left( {5;3} \right);\left( {4;2} \right);\left( {3;1} \right)} \right\}\).

Suy ra \(n\left( C \right) = 8\). Do đó \(P\left( C \right) = \frac{8}{{36}} = \frac{2}{9}\).

Lời giải

Hướng dẫn giải

Trả lời: 750

Gọi số tự nhiên gồm 4 chữ số là \(\overline {abcd} \).

Th1: \(d = 0\).

\(d:\) có 1 cách chọn.

\(a,b,c:\) có \(A_7^3 = 210\). Do đó trong trường hợp này lập được 210 số.

Th2: \(d \in \left\{ {2;4;6} \right\}\).

\(d\): có 3 cách chọn.

\(a:\) có 6 cách chọn.

\(b,c:\) có \(A_6^2\).

Do đó trong trường hợp này có \(3.6.A_6^2 = 540\) số.

Vậy có tất cả \(210 + 540 = 750\) số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Xét \(A\) là biến cố liên quan đến phép thử T với không gian mẫu là \(\Omega \). Mệnh đề nào dưới đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay