Câu hỏi:

12/03/2025 109

PHẦN II. Câu hỏi trắc nghiệm đúng sai.

 Một trường trung học cơ sở mua 500 quyển vở bao gồm \(x\) quyển vở loại thứ nhất và \(y\) quyển vở loại thứ hai \(\left( {x,y \in \mathbb{N}*} \right)\) để làm phần thưởng cho học sinh. Giá bán của mỗi quyển vở loại thứ nhất, loại thứ hai lần lượt là \[8\,\,000\] đồng và \[9\,\,000\] đồng. Biết tổng số tiền nhà trường đã dùng để mua 500 quyển vở đó là \[4\,\,200\,\,000\] đồng. Mỗi học sinh Xuất sắc được thưởng 02 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai; mỗi học sinh Giỏi được thưởng 01 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai; các học sinh khác không được thưởng và số học sinh này chiếm \(40\% \) tổng số học sinh cả trường.

a) \(x + y = 500\).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đúng

Tổng số quyển vở đã mua là 500 quyển nên \(x + y = 500\).

Câu hỏi cùng đoạn

Câu 2:

b) \(9x + 8y = 4\,\,200\,\,000\).

Xem lời giải

verified Lời giải của GV VietJack

Sai

Tổng số tiền nhà trường mua 500 quyển vở là 4 200 000 đồng nên \(8\,\,000x + 9\,\,000y = 4\,\,200\,\,000\) hay \(8x + 9y = 4\,\,200\)

Câu 3:

c) \(x = 300;y = 200\).

Xem lời giải

verified Lời giải của GV VietJack

Đúng

Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 500}\\{8x + 9y = 4\,\,200.}\end{array}} \right.\)

Sử dụng máy tính cầm tay giải hệ phương trình (1) ta được \(\left\{ {\begin{array}{*{20}{l}}{x = 300}\\{y = 200}\end{array}} \right.\) (thỏa mãn điều kiện).

Câu 4:

d) Tổng số học sinh của trường trung học cơ sở đó là 600 học sinh.

Xem lời giải

verified Lời giải của GV VietJack

Sai

Gọi \(u,\,\,v\) lần lượt là số học sinh Xuất sắc và số học sinh Giỏi \(\left( {u,\,\,v \in {\mathbb{N}^*}} \right)\).

Mỗi học sinh Xuất sắc được thưởng 02 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(2u + v = 300.\)

Mỗi học sinh Giỏi được thưởng 01 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(u + v = 200.\)

Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2u + v = 300}\\{u + v = 200}\end{array}} \right.\) (2).

Sử dụng máy tính cầm tay giải hệ phương trình (2) ta được \(\left\{ {\begin{array}{*{20}{l}}{u = 100}\\{v = 100}\end{array}} \right.\) (thỏa mãn điều kiện).

Vậy có tổng \(100 + 100 = 200\) học sinh Xuất sắc và Giỏi, chiếm \(40\% \) tổng số học sinh cả trường.

Do đó, tổng số học sinh của trường là \(200:40\% = 500\) (học sinh).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Giá của chiếc áo sau lần giảm giá thứ nhất là: \(120\,\,000 - 1200x\) (đồng).

Xem đáp án » 12/03/2025 162

Câu 2:

a) Xác suất để lấy được quả cầu màu xanh bằng xác suất để lấy được quả cầu màu đỏ.

Xem đáp án » 11/03/2025 155

Câu 3:

a) Độ dài đoạn thẳng \[OA\]\(1,5\sqrt 2 \;\,{\rm{m}}\).

Xem đáp án » 12/03/2025 134

Câu 4:

Nước từ vòi phun nước (đặt cách mặt nước \[0,2{\rm{ m)}}\] được phun lên cao sẽ đạt một độ cao nào đó rồi rơi xuống. Giả sử nước được từ đầu vòi phun (vị trí \[A)\] và rơi xuống vị trí \(B.\) Đường đi của nước là một phần của parabol dạng \(y = - \frac{1}{8}{x^2}\) trong hệ trục tọa độ \[Oxy\] với \(O\) là điểm cao nhất của nước được phun ra so với mặt nước, trục \[Ox\] song song với \[AB,{\rm{ }}x\]\(y\) tính bằng đơn vị mét. Biết \(AB = 12\;\,{\rm{m}}\,{\rm{.}}\) Tính chiều cao \(h\) từ điểm \(O\) đến mặt nước (Hình 5).

Tính chiều cao \(h\) từ điểm \(O\) đến mặt nước (Hình 5). (ảnh 1)

Xem đáp án » 12/03/2025 78

Câu 5:

PHẦN I. Câu hỏi trắc nghiệm nhiều phương án lựa chọn.

Căn bậc hai số học của 81 là

Xem đáp án » 11/03/2025 63

Câu 6:

Cho hình vuông \[MNPQ\] (Hình 1). Phép quay thuận chiều tâm \(O\) biến điểm \(M\) thành điểm \(Q\) thì các điểm \[N,\,\,P,\,\,Q\] tương ứng thành các điểm
Phép quay thuận chiều tâm \(O\) biến điểm \(M\) thành điểm \(Q\) thì các điểm \[N,\,\,P,\,\,Q\] tương ứng thành các điểm (ảnh 1)

Xem đáp án » 12/03/2025 61