Câu hỏi:
11/03/2025 43Có ba chiếc hộp. Hộp \[A\] chứa 2 tấm thẻ lần lượt ghi các số 1 và 2. Hộp \[B\] chứa 3 tấm thẻ lần lượt ghi các số \[1\,;\,\,2\] và 3. Hộp \[C\] chứa 4 quả cầu lần lượt ghi các số \[1\,;\,\,2\,;\,\,3\] và 4. Bạn An rút ngẫu nhiên đồng thời một tấm thẻ từ mỗi hộp \(A\) và \(B\). Bạn Bình lấy ngẫu nhiên một quả cầu từ hộp \(C.\) Tính xác suất của biến cố “Tổng ba số ghi trên hai tấm thẻ và quả cầu là 6”.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Gọi \(\left( {i;j;k} \right)\) là kết quả thẻ lấy từ hộp \(A\) ghi số \(i\), thẻ lấy tự hộp \(B\) ghi số \(j\), quả cầu lấy từ hộp \(C\) ghi số \[k.\]
Không gian mẫu của phép thử là \[\Omega = \left\{ {\left( {1;1;1} \right);\,\,\left( {1;1;2} \right);\,\,\left( {1;1;3} \right);\,\,\left( {1;1;4} \right);\,\,\left( {1;2;1} \right);} \right.\]\[\left( {1;2;2} \right);\]
\[\left( {1;2;3} \right);\]\(\left( {1;2;4} \right);\,\,\left( {1;3;1} \right);\,\,\left( {1;3;2} \right);\,\,\left( {1;3;3} \right);\,\,\left( {1;3;4} \right);\,\,\left( {2;1;1} \right);\,\,\left( {2;1;2} \right);\,\,\left( {2;1;3} \right);\)\(\left( {2;1;4} \right);\)\(\left( {2;2;1} \right);\)\(\left( {2;2;2} \right);\,\,\left( {2;2;3} \right);\)\(\left( {2;2;4} \right);\,\,\left( {2;3;1} \right);\,\,\left. {\left( {2;3;2} \right);\,\,\left( {2;3;3} \right);\,\,\left( {2;3;4} \right)} \right\}.\)
Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 24\).
Vì các tấm thẻ cùng loại, các quả cầu có cùng kích thước và khối lượng nên các kết quả trên có cùng khả năng xảy ra.
Gọi \[D\] là biến cố “Tổng ba số ghi trên hai tấm thẻ và quả cầu là 6”.
Các kết quả thuận lợi cho biến cố \[D\] là
\[\left( {1;1;4} \right);\,\,\left( {1;2;3} \right);\,\,\left( {1;3;2} \right);\,\,\left( {2;1;3} \right);\,\,\left( {2;2;2} \right);\,\,\left( {2;3;1} \right).\]
Do đó \(n\left( D \right) = 6\).
Vậy xác suất của biến cố \(D\) là \(P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{6}{{24}} = 0,25\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 5:
Nước từ vòi phun nước (đặt cách mặt nước \[0,2{\rm{ m)}}\] được phun lên cao sẽ đạt một độ cao nào đó rồi rơi xuống. Giả sử nước được từ đầu vòi phun (vị trí \[A)\] và rơi xuống vị trí \(B.\) Đường đi của nước là một phần của parabol dạng \(y = - \frac{1}{8}{x^2}\) trong hệ trục tọa độ \[Oxy\] với \(O\) là điểm cao nhất của nước được phun ra so với mặt nước, trục \[Ox\] song song với \[AB,{\rm{ }}x\] và \(y\) tính bằng đơn vị mét. Biết \(AB = 12\;\,{\rm{m}}\,{\rm{.}}\) Tính chiều cao \(h\) từ điểm \(O\) đến mặt nước (Hình 5).
Câu 6:
PHẦN I. Câu hỏi trắc nghiệm nhiều phương án lựa chọn.
Câu 7:
Gieo một con xúc xắc 50 lần cho kết quả như bảng sau:
Số chấm xuất hiện |
1 |
2 |
3 |
4 |
5 |
6 |
Tần số |
8 |
7 |
? |
8 |
6 |
11 |
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận