Câu hỏi:
11/03/2025 81Có ba chiếc hộp. Hộp \[A\] chứa 2 tấm thẻ lần lượt ghi các số 1 và 2. Hộp \[B\] chứa 3 tấm thẻ lần lượt ghi các số \[1\,;\,\,2\] và 3. Hộp \[C\] chứa 4 quả cầu lần lượt ghi các số \[1\,;\,\,2\,;\,\,3\] và 4. Bạn An rút ngẫu nhiên đồng thời một tấm thẻ từ mỗi hộp \(A\) và \(B\). Bạn Bình lấy ngẫu nhiên một quả cầu từ hộp \(C.\) Tính xác suất của biến cố “Tổng ba số ghi trên hai tấm thẻ và quả cầu là 6”.
Quảng cáo
Trả lời:
Gọi \(\left( {i;j;k} \right)\) là kết quả thẻ lấy từ hộp \(A\) ghi số \(i\), thẻ lấy tự hộp \(B\) ghi số \(j\), quả cầu lấy từ hộp \(C\) ghi số \[k.\]
Không gian mẫu của phép thử là \[\Omega = \left\{ {\left( {1;1;1} \right);\,\,\left( {1;1;2} \right);\,\,\left( {1;1;3} \right);\,\,\left( {1;1;4} \right);\,\,\left( {1;2;1} \right);} \right.\]\[\left( {1;2;2} \right);\]
\[\left( {1;2;3} \right);\]\(\left( {1;2;4} \right);\,\,\left( {1;3;1} \right);\,\,\left( {1;3;2} \right);\,\,\left( {1;3;3} \right);\,\,\left( {1;3;4} \right);\,\,\left( {2;1;1} \right);\,\,\left( {2;1;2} \right);\,\,\left( {2;1;3} \right);\)\(\left( {2;1;4} \right);\)\(\left( {2;2;1} \right);\)\(\left( {2;2;2} \right);\,\,\left( {2;2;3} \right);\)\(\left( {2;2;4} \right);\,\,\left( {2;3;1} \right);\,\,\left. {\left( {2;3;2} \right);\,\,\left( {2;3;3} \right);\,\,\left( {2;3;4} \right)} \right\}.\)
Số kết quả có thể xảy ra là \(n\left( \Omega \right) = 24\).
Vì các tấm thẻ cùng loại, các quả cầu có cùng kích thước và khối lượng nên các kết quả trên có cùng khả năng xảy ra.
Gọi \[D\] là biến cố “Tổng ba số ghi trên hai tấm thẻ và quả cầu là 6”.
Các kết quả thuận lợi cho biến cố \[D\] là
\[\left( {1;1;4} \right);\,\,\left( {1;2;3} \right);\,\,\left( {1;3;2} \right);\,\,\left( {2;1;3} \right);\,\,\left( {2;2;2} \right);\,\,\left( {2;3;1} \right).\]
Do đó \(n\left( D \right) = 6\).
Vậy xác suất của biến cố \(D\) là \(P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{6}{{24}} = 0,25\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 5:
Gieo một con xúc xắc 50 lần cho kết quả như bảng sau:
Số chấm xuất hiện |
1 |
2 |
3 |
4 |
5 |
6 |
Tần số |
8 |
7 |
? |
8 |
6 |
11 |
Câu 6:
PHẦN III. Câu hỏi trắc nghiệm trả lời ngắn.
Cho \(P = \frac{2}{{\sqrt x - 1}} + \frac{2}{{\sqrt x + 1}} - \frac{{5 - \sqrt x }}{{x - 1}}\) với \(x \ge 0\) và \(x \ne 1\). Tìm giá trị của \(x\) để giá trị của \(P\) là \[0,25.\]
Câu 7:
Nước từ vòi phun nước (đặt cách mặt nước \[0,2{\rm{ m)}}\] được phun lên cao sẽ đạt một độ cao nào đó rồi rơi xuống. Giả sử nước được từ đầu vòi phun (vị trí \[A)\] và rơi xuống vị trí \(B.\) Đường đi của nước là một phần của parabol dạng \(y = - \frac{1}{8}{x^2}\) trong hệ trục tọa độ \[Oxy\] với \(O\) là điểm cao nhất của nước được phun ra so với mặt nước, trục \[Ox\] song song với \[AB,{\rm{ }}x\] và \(y\) tính bằng đơn vị mét. Biết \(AB = 12\;\,{\rm{m}}\,{\rm{.}}\) Tính chiều cao \(h\) từ điểm \(O\) đến mặt nước (Hình 5).
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận