Câu hỏi:

12/03/2025 1,218

Giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) cùng với gốc tọa độ tạo thành tam giác có diện tích bằng          

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Phương trình hoành độ giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) là:

\({x^2} = x + 2\)

\({x^2} - x - 2 = 0\)

\(\left( {{x^2} + x} \right) - \left( {2x + 2} \right) = 0\)

 Giao điểm của parabol \(y = {x^2}\) và đường thẳng \(y = x + 2\) cùng với gốc tọa độ tạo thành tam giác có diện tích bằng 	 (ảnh 1)

\(x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0\)

\(\left( {x + 1} \right)\left( {x - 2} \right) = 0\)

\(x + 1 = 0\) hoặc \(x - 2 = 0\)

\(x = - 1\) hoặc \(x = 2.\)

Thay \(x = - 1\) vào hàm số \(y = {x^2},\) ta được \(y = {\left( { - 1} \right)^2} = 1.\)

Thay \(x = 2\) vào hàm số \(y = {x^2},\) ta được \(y = {2^2} = 4.\)

Như vậy, đường thẳng \(y = x + 2\) cắt parabol \(y = {x^2}\) tại hai điểm \(A\left( { - 1;\,\,1} \right)\)\(B\left( {2;\,\,4} \right).\)

Gọi giao điểm của đường thẳng \(y = x + 2\) với trục tung là \(I\left( {0;\,\,2} \right).\) Suy ra \(OI = \left| 2 \right| = 2.\)

Gọi hình chiếu của \(A\left( { - 1;\,\,1} \right),\,\,B\left( {2;\,\,4} \right)\) lên trục tung lần lượt là \(H\left( {0;\,\,1} \right)\)\(K\left( {0;\,\,4} \right).\)

Suy ra \(AH = \left| { - 1} \right| = 1;\,\,BK = \left| 2 \right| = 2.\)

Ta có: \({S_{\Delta OAI}} = \frac{1}{2} \cdot AH \cdot OI = \frac{1}{2} \cdot 1 \cdot 2 = 1\) (đơn vị diện tích);

 \[{S_{\Delta OBI}} = \frac{1}{2} \cdot BK \cdot OI = \frac{1}{2} \cdot 2 \cdot 2 = 2\] (đơn vị diện tích).

Vậy diện tích của tam giác \(OAB\) là: \({S_{\Delta OAB}} = {S_{\Delta OAI}} + {S_{\Delta OBI}} = 1 + 2 = 3\) (đơn vị diện tích).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bán kính đường tròn ngoại tiếp tam giác đều cạnh 6 cm là         

Xem đáp án » 12/03/2025 476

Câu 2:

Hình nón có chiều cao bằng 12 cm, bán kính đáy bằng 9 cm thì diện tích xung quanh là          

Xem đáp án » 12/03/2025 456

Câu 3:

Bạn Bắc gieo một con xúc xắc 50 lần cho kết quả như sau:

Số chấm xuất hiện

1

2

3

4

5

6

Tần số

8

7

10

8

6

11

Tần số xuất hiện mặt 3 chấm là          

Xem đáp án » 12/03/2025 406

Câu 4:

Trong các phương trình bậc hai sau phương trình nào có tổng hai nghiệm bằng 3?          

Xem đáp án » 12/03/2025 378

Câu 5:

1) Cho \(a,\,\,b,\,\,c\) là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức\(P = \frac{{3\left( {b + c} \right)}}{{2a}} + \frac{{4a + 3c}}{{3b}} + \frac{{12\left( {b - c} \right)}}{{2a + 3c}}.\)

Xem đáp án » 12/03/2025 301

Câu 6:

Biểu thức \(\sqrt[3]{{x - 1}}\) có điều kiện xác định là          

Xem đáp án » 12/03/2025 298
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua