Cho tam giác \(ABC\) nội tiếp đường tròn \(\left( O \right)\) có \(\widehat {BOC} = 80^\circ .\) Số đo của \(\widehat {BAC}\) bằng
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét đường tròn \(\left( O \right)\) có \(\widehat {BAC},\,\,\widehat {BOC}\) lần lượt là góc nội tiếp và góc ở tâm cùng chắn cung \(BC\).
Do đó \[\widehat {BAC} = \frac{1}{2}\widehat {BOC} = \frac{1}{2} \cdot 80^\circ = 40^\circ .\]CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(AB,\,\,AC\) lần lượt là hai tiếp tuyến của đường tròn \(\left( O \right)\) tại \(B,C\) nên \(AB \bot OB,\,\,AC \bot OC.\)
Do \(\Delta OAB\) vuông tại \(B\) nên đường tròn ngoại tiếp tam giác \(\Delta OAB\) có tâm là trung điểm của cạnh huyền \(OA.\) Tức là ba điểm \(O,\,\,A,\,\,B\) cùng thuộc đường tròn đường kính \(OA.\)
Chứng minh tương tự đối với \(\Delta OAC\) vuông tại \(C\) ta có ba điểm \(O,\,\,A,\,\,C\) cùng thuộc đường tròn đường kính \(OA.\)Vậy tứ giác \(ABOC\) nội tiếp đường tròn đường kính \(OA.\)
Lời giải
Đáp số: \(0,3.\)
Gọi \(A,\,\,B\) lần lượt là hai học sinh nam và \(C,\,\,D,\,\,E\) lần lượt là ba học sinh nữ.
Xét phép thử “chọn ngẫu nhiên 2 học sinh của câu lạc bộ”.
Kết quả của phép thử là cặp chữ \(\left( {X,\,\,Y} \right)\) trong đó \(X,\,\,Y\) lần lượt là tên hai học sinh được chọn.
Không gian mẫu của phép thử trên là:
\[\Omega = \left\{ {\left( {A,\,\,B} \right);\,\,\left( {A,\,\,C} \right);\,\,\left( {A,\,\,D} \right);\,\,\left( {A,\,\,E} \right);\,\,\left( {B,\,\,C} \right);\,\,\left( {B,\,\,D} \right);\,\,\left( {B,\,\,E} \right);\,\,\left( {C,\,\,D} \right);\,\,\left( {C,\,\,E} \right);\,\,\left( {D,\,\,E} \right)} \right\}.\]
Không gian mẫu có 10 phần tử.
Gọi \(M\) là biến cố “2 học sinh được chọn đều là học sinh nữ”.
Có 3 kết quả thuận lợi cho biến cố \(M\), đó là: \(\left( {C,\,\,D} \right),\,\,\left( {C,\,\,E} \right),\,\,\left( {D,\,\,E} \right).\)
Xác suất để cả 2 học sinh được chọn đều là học sinh nữ là: \(P\left( M \right) = \frac{3}{{10}} = 0,3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.