Câu 1-2. (2,0 điểm) Biểu đồ dưới đây biểu diễn tỉ lệ về thời gian chạy cự li 100 mét của các học sinh lớp 9A.

Biết rằng có 5 học sinh có thời gian chạy từ 13 giây đến dưới 15 giây.
a) Lập bảng tần số ghép nhóm tương ứng.
Câu 1-2. (2,0 điểm) Biểu đồ dưới đây biểu diễn tỉ lệ về thời gian chạy cự li 100 mét của các học sinh lớp 9A.
Biết rằng có 5 học sinh có thời gian chạy từ 13 giây đến dưới 15 giây.
Quảng cáo
Trả lời:

a) Gọi \(n\) là tổng số học sinh của lớp 9A, ta có \(\frac{5}{n} \cdot 100\% = 12,5\% \).
Suy ra \(n = 40\) học sinh.
Ta có bảng phân bố tần số ghép nhóm như sau:
Thời gian (tính bằng giây) |
\(\left[ {13;15} \right)\) |
\(\left[ {15;17} \right)\) |
\(\left[ {17;19} \right)\) |
\(\left[ {19;21} \right)\) |
Tần số |
5 |
16 |
13 |
6 |
Câu hỏi cùng đoạn
Câu 2:
b) Bạn lớp trưởng cho rằng có trên 50% số học sinh của lớp có thời gian chạy nhanh hơn 17 giây. Nhận định đó đúng hay sai? Tại sao?

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có bảng sau:
Lần 2 Lần 1 |
1 |
2 |
3 |
4 |
1 |
(1, 1) |
(1, 2) |
(1, 3) |
(1, 4) |
2 |
(2, 1) |
(2, 2) |
(2, 3) |
(2, 4) |
3 |
(3, 1) |
(3, 2) |
(3, 3) |
(3, 4) |
4 |
(4, 1) |
(4, 2) |
(4, 3) |
(4, 4) |
Không gian mẫu là:
\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]
Do đó, không gian mẫu có 16 phần tử.
Lời giải
Gọi thời gian để vòi thứ nhất chảy đầy bể là \(x\) (giờ) \[\left( {x > 0} \right)\].
Khi đó, thời gian để vòi thứ hai chảy đầy bể \(x + 5\) (giờ).
Khi đó, mỗi giờ vòi thứ nhất chảy được \(\frac{1}{x}\) bể; vòi thứ hai chảy dược: \(\frac{1}{{x + 5}}\) bể và cả hai vòi chảy được \(\frac{1}{6}\) bể.
Theo đề bài, ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 5}} = \frac{1}{6}\)
\(\frac{{6\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}} + \frac{{6x}}{{6x\left( {x + 5} \right)}} = \frac{{x\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}}\)
\(6\left( {x + 5} \right) + 6x = x\left( {x + 5} \right)\)
\({x^2} - 7x - 30 = 0\)
\(x = 10\) (TMĐK) hoặc \(x = - 3\) (loại).
Vậy: Vòi thứ nhất chảy đầy bể trong 10 giờ.
Vòi thứ hai chảy đầy bế trong 15 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.