Câu hỏi:

19/08/2025 117 Lưu

Câu 5-6. Lực \(F\,\,\left( {\rm{N}} \right)\) của gió khi thổi vuông góc vào cánh buồm tỷ lệ thuận với bình phương tốc độ \(v\,\,\left( {{\rm{m/s}}} \right)\) của gió theo công thức: \(F = a{v^2}\), trong đó \(a\) là một hằng số.
a) Tính hằng số \(a\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Thay \(v = 2,\,\,F = 120\) vào công thức \(F = a{v^2}\), ta được \(120 = a \cdot {2^2}\)

Khi đó \(4a = 120\) nên \(a = 30.\)

Vậy hằng số \(a = 30\)

Câu hỏi cùng đoạn

Câu 2:

b) Khi tốc độ của gió là \(v = 10\,\,{\rm{m/s}}\) thì lực \(F\) của gió tác động lên cánh buồm là bao nhiêu?

Xem lời giải

verified Giải bởi Vietjack

b) Vì \(a = 30\) nên \(F = 30{v^2}\).

Với \(v = 10\) ta có \(F = 30 \cdot {10^2} = 3000\,\,\left( {\rm{N}} \right)\).

Vậy khi tốc độ của gió là \(v = 10\,\,{\rm{m/s}}\) thì lực \(F\) của gió tác động lên cánh buồm là \(3\,\,000\,\,{\rm{N}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có bảng sau:

Lần 2

Lần 1

1

2

3

4

1

(1, 1)

(1, 2)

(1, 3)

(1, 4)

2

(2, 1)

(2, 2)

(2, 3)

(2, 4)

3

(3, 1)

(3, 2)

(3, 3)

(3, 4)

4

(4, 1)

(4, 2)

(4, 3)

(4, 4)

Không gian mẫu là:

\[\Omega = \left\{ {\left( {1\,,\,\,1} \right)\,;\,\,\left( {1\,,\,\,2} \right)\,;\,\,\left( {1\,,\,\,3} \right)\,;\,\,\left( {1\,,\,\,4} \right)\,;\,\,\left( {2\,,\,\,1} \right)\,;\,\,\left( {2\,,\,\,2} \right);{\rm{ }}\left( {2\,,\,\,3} \right);{\rm{ }}\left( {2\,,\,\,4} \right);{\rm{ }}\left( {3\,,\,\,1} \right)\,;\,\,\left( {3\,,\,\,2} \right)} \right.\,;\,\,\left( {3\,,\,\,3} \right)\,;\,\,\left( {3\,,\,\,4} \right)\,;{\rm{ }}\] \[\left. {\left( {4\,,\,\,1} \right);\,\,\left( {4\,,\,\,2} \right);\,\,\left( {4\,,\,\,3} \right);\,\,\left( {4\,,\,\,4} \right)} \right\}.\]

Do đó, không gian mẫu có 16 phần tử.

Lời giải

Gọi thời gian để vòi thứ nhất chảy đầy bể là \(x\) (giờ) \[\left( {x > 0} \right)\].

Khi đó, thời gian để vòi thứ hai chảy đầy bể \(x + 5\) (giờ).

Khi đó, mỗi giờ vòi thứ nhất chảy được \(\frac{1}{x}\) bể; vòi thứ hai chảy dược: \(\frac{1}{{x + 5}}\) bể và cả hai vòi chảy được \(\frac{1}{6}\) bể.

Theo đề bài, ta có phương trình: \(\frac{1}{x} + \frac{1}{{x + 5}} = \frac{1}{6}\)

\(\frac{{6\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}} + \frac{{6x}}{{6x\left( {x + 5} \right)}} = \frac{{x\left( {x + 5} \right)}}{{6x\left( {x + 5} \right)}}\)

\(6\left( {x + 5} \right) + 6x = x\left( {x + 5} \right)\)

\({x^2} - 7x - 30 = 0\)
\(x = 10\) (TMĐK) hoặc \(x = - 3\) (loại).

Vậy: Vòi thứ nhất chảy đầy bể trong 10 giờ.

Vòi thứ hai chảy đầy bế trong 15 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP