Câu hỏi:
06/05/2025 57Câu hỏi trong đề: 10 bài tập Nguyên hàm có điều kiện có lời giải !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có \(f\left( x \right) = \int {\left( {3 - 5\sin x} \right)dx} = 3x + 5\cos x + C\).
Theo giả thiết f(0) = 10 nên 5 + C = 10 C = 5.
Vậy f(x) = 3x + 5cosx + 5.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có \(F\left( x \right) = \int {{e^{2x}}dx} = \frac{1}{2}{e^{2x}} + C\);
Mà F(0) = 0 \(C = - \frac{1}{2}\). Do đó \(F\left( x \right) = \frac{1}{2}{e^{2x}} - \frac{1}{2}\).
Khi đó \(F\left( {\ln 3} \right) = \frac{1}{2}{e^{2\ln 3}} - \frac{1}{2} = 4\).
Lời giải
Đáp án đúng là: C
Có \(f\left( x \right) = \int {\left( {{e^x} + 2x + 1} \right)dx} = {e^x} + {x^2} + x + C\).
Vì f(0) = 1 nên C = 0. Suy ra f(x) = ex + x2 + x.
Vì F(x) là nguyên hàm của f(x) nên \(F\left( x \right) = \int {\left( {{e^x} + {x^2} + x} \right)dx} = {e^x} + \frac{1}{3}{x^3} + \frac{1}{2}{x^2} + {C_1}\).
Lại có F(1) = e \( \Rightarrow C = - \frac{5}{6}\). Do đó \(F\left( x \right) = {e^x} + \frac{1}{3}{x^3} + \frac{1}{2}{x^2} - \frac{5}{6}\).
Khi đó \(F\left( 0 \right) = {e^0} - \frac{5}{6} = 1 - \frac{5}{6} = \frac{1}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.