Câu hỏi:
06/05/2025 90Biết \[\int\limits_0^1 {\frac{{{e^x}}}{{{2^x}}}dx} = \frac{{\frac{e}{a} + b}}{{1 - \ln a}}\] (a, b ℝ). Khi đó giá trị của P = a + b là
Câu hỏi trong đề: 10 bài tập Tích phân của các hàm số cơ bản có lời giải !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
\(\int\limits_0^1 {\frac{{{e^x}}}{{{2^x}}}dx = \int\limits_0^1 {{{\left( {\frac{e}{2}} \right)}^x}dx = \left. {\left( {\frac{{{{\left( {\frac{e}{2}} \right)}^x}}}{{\ln \frac{e}{2}}}} \right)} \right|} } _0^1 = \frac{{\frac{e}{2} - 1}}{{1 - \ln 2}}\). Suy ra a = 2; b = −1.
Do đó a + b = 1.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có \(I = \int\limits_1^e {\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)} dx = \left. {\left( {\ln \left| x \right| + \frac{1}{x}} \right)} \right|_1^e = \frac{1}{e}\).
Lời giải
Đáp án đúng là: B
\(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {3{{\tan }^2}xdx} = 3\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx = \left. {3\left( {\tan x - x} \right)} \right|_{\frac{\pi }{4}}^{\frac{\pi }{3}} = 3\sqrt 3 - 3 - \frac{\pi }{4}} \).
Do đó P = a + b + c = −4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.