Câu hỏi:
06/05/2025 215
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (giờ) có đồ thị là một phần của đường parabol có đỉnh I(2; 9) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (giờ) có đồ thị là một phần của đường parabol có đỉnh I(2; 9) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi v(t) = at2 + bt + c.
Đồ thị v(t) là một phần parabol có đỉnh I(2; 9) và đi qua điểm A(0; 6) nên \[\left\{ \begin{array}{l}\frac{{ - b}}{{2a}} = 2\\a{.2^2} + b.2 + c = 9\\a{.0^2} + b.0 + c = 6\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = \frac{{ - 3}}{4}\\b = 3\\c = 6\end{array} \right.\]. Tìm được \(v\left( t \right) = - \frac{3}{4}{t^2} + 3t + 6\)
Vậy \(S = \int\limits_0^3 {\left( { - \frac{3}{4}{t^2} + 3t + 6} \right)} dt = \) 24,75 (km).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Có \(v\left( t \right) = \int {2\cos tdt = 2\sin t + C} \).
Vì v(0) = 0 nên C = 0. Do đó v(t) = 2sint.
Quãng đường vật đi được là \(\int\limits_0^\pi {2\sin tdt} = \left. { - 2\cos t} \right|_0^\pi = 4\).
Lời giải
Đáp án đúng là: D
Sự thay đổi của lợi nhuận là \(\int\limits_{100}^{125} {P'\left( x \right)dx} = \int\limits_{100}^{125} {\left( { - 0,0004x + 9,3} \right)dx} \)\( = \left. {\left( { - 0,0002{x^2} + 9,3x} \right)} \right|_{100}^{125} = 231,375\) triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.