Một chiếc máy bay chuyển động trên đường băng với vận tốc v(t) = t2 + 10t (m/s) với t là thời gian tính theo đơn vị giây kể từ khi máy bay bắt đầu chuyển động. Biết khi máy bay đạt vận tốc 200 m/s thì nó rời đường băng. Quãng đường máy bay đã di chuyển trên đường băng là
Quảng cáo
Trả lời:

Đáp án đúng là: A
Xét v(t) = 200 t2 + 10t – 200 = 0 t = 10 hoặc t = −20.
Vậy thời gian máy bay đạt vận tốc 200 m/s là thời điểm t = 10 s sau khi bắt đầu chuyển động.
Quãng đường máy bay đã di chuyển trên đường băng là
\(s = \int\limits_0^{10} {v\left( t \right)dt} = \int\limits_0^{10} {\left( {{t^2} + 10t} \right)dt} = \frac{{2500}}{3}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Có \(v\left( t \right) = \int {2\cos tdt = 2\sin t + C} \).
Vì v(0) = 0 nên C = 0. Do đó v(t) = 2sint.
Quãng đường vật đi được là \(\int\limits_0^\pi {2\sin tdt} = \left. { - 2\cos t} \right|_0^\pi = 4\).
Lời giải
Đáp án đúng là: D
Sự thay đổi của lợi nhuận là \(\int\limits_{100}^{125} {P'\left( x \right)dx} = \int\limits_{100}^{125} {\left( { - 0,0004x + 9,3} \right)dx} \)\( = \left. {\left( { - 0,0002{x^2} + 9,3x} \right)} \right|_{100}^{125} = 231,375\) triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.