Câu hỏi:
06/05/2025 79Diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = x3 + 11x – 6, y = 6x2 và hai đường thẳng x = 0, x = 2 là
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có x3 + 11x – 6 = 6x2 x3 – 6x2 + 11x – 6 = 0 x = 1 hoặc x = 2 hoặc x = 3.
Ta có
\(S = \int\limits_0^2 {\left| {{x^3} - 6{x^2} + 11x - 6} \right|dx} = - \int\limits_0^1 {\left( {{x^3} - 6{x^2} + 11x - 6} \right)dx} + \int\limits_1^2 {\left( {{x^3} - 6{x^2} + 11x - 6} \right)dx} \)
\( = \frac{9}{4} + \frac{1}{4} = \frac{5}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có \(S = \int\limits_0^2 {\left| {{x^2} - x} \right|dx} = \int\limits_0^1 {\left| {{x^2} - x} \right|dx} + \int\limits_1^2 {\left| {{x^2} - x} \right|dx} \)\( = - \int\limits_0^1 {\left( {{x^2} - x} \right)dx} + \int\limits_1^2 {\left( {{x^2} - x} \right)dx} \).
Lời giải
Đáp án đúng là: D
Dựa vào đồ thị ta có hai hàm số y = x2 + x – 2 và y = −x + 1.
Dựa vào đồ thị ta có \(S = \int\limits_{ - 3}^1 {\left| {\left( {{x^2} + x - 2} \right) - \left( { - x + 1} \right)} \right|dx} = \int\limits_{ - 3}^1 {\left( { - {x^2} - 2x + 3} \right)dx} = \frac{{32}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.