Câu hỏi:

06/05/2025 881 Lưu

Gọi D là hình phẳng giới hạn bởi các đường y = e3x, y = 0, x = 0 và x = 1. Thể tích của khối tròn xoay tạo thành khi quay D quanh trục Ox bằng

A. V = \(\pi \int\limits_0^1 {{e^{3x}}dx} \);

B. \(V = \int\limits_0^1 {{e^{6x}}dx} \);

C. \(V = \pi \int\limits_0^1 {{e^{6x}}dx} \);

D. \(V = \int\limits_0^1 {{e^{3x}}dx} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

\(V = \pi \int\limits_0^1 {{{\left( {{e^{3x}}} \right)}^2}dx} = \pi \int\limits_0^1 {{e^{6x}}dx} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có \(V = \pi \int\limits_2^5 {{{\left( {\sqrt {x - 1} } \right)}^2}dx} = \pi \int\limits_2^5 {\left( {x - 1} \right)dx} = \frac{{15\pi }}{2}\).

Câu 2

A. \(\frac{{496\pi }}{{15}}\);

B. \(\frac{{32\pi }}{{15}}\);

C. \(\frac{{4\pi }}{3}\);

D. \(\frac{{16\pi }}{{15}}\).

Lời giải

Đáp án đúng là: D

Có x2 – 2x = 0 x = 0 hoặc x = 2.

Thể tích \(V = \pi \int\limits_0^2 {{{\left( {{x^2} - 2x} \right)}^2}dx} = \pi \int\limits_0^2 {\left( {{x^4} - 4{x^3} + 4{x^2}} \right)dx} \)\( = \left. {\pi \left( {\frac{{{x^5}}}{5} - {x^4} + \frac{{4{x^3}}}{3}} \right)} \right|_0^2 = \frac{{16\pi }}{{15}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP