Câu hỏi:
09/05/2025 9Cho tam giác ABD vuông tại A có AB < AD. Gọi M là trung điểm của BD. Lấy C sao cho M là trung điểm của AC.
a) Chứng minh ABCD là hình chữ nhật.
b) Trên tia đối DA lấy E sao cho DA = DE. Gọi I là trung điểm của CD. Chứng minh IB = IE.
c) Kẻ AH vuông góc với BD. Lấy K sao cho H là trung điểm của AK. Chứng minh BDCK là hình thang cân.
Quảng cáo
Trả lời:
Lời giải:
a) Xét tứ giác ABCD có M là trung điểm chung của AC và BD
Suy ra ABCD là hình bình hành.
Hình bình hành ABCD có \(\widehat {BAD}\)= 90° nên ABCD là hình chữ nhật.
b) Vì ABCD là hình chữ nhật nên AD // BC và AD = BC.
Mà D ∈ AE nên ED // BC; AD = BC.
Theo đề bài, DA = DE suy ra BC = ED.
Xét tứ giác EDBC có ED // BC; ED = BC.
Do đó EDBC là hình bình hành.
Suy ra EB cắt DC tại trung điểm của mỗi đường
Mà I là trung điểm của DC nên I là trung điểm của EB
Vậy IE = IB.
c) Xét ΔACK có H, M lần lượt là trung điểm của AK, AC
Suy ra HM là đường trung bình của ΔACK
Suy ra HM // CK nên CK // DB
Xét ΔDAK có DH vừa là đường cao vừa là đường trung tuyến.
Suy ra ΔDAK cân tại D nên DA = DK
Mà DA = BC (ABCD là hình chữ nhật) nên DK = BC
Xét tứ giác BKCD có CK // BD nên BKCD là hình thang.
Hình thang BKCD có CB = DK nên BKCD là hình thang cân
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phân số P = \(\frac{{6n + 5}}{{3n + 2}}\). Chứng minh P là phân số tối giản.
Câu 2:
Cho biểu thức E = \(2024! + \frac{{2024!}}{2} + \frac{{2024!}}{3} + ........ + \frac{{2024!}}{{2024}}\). Chứng minh E chia hết cho 2025.
Câu 3:
Cho hình vẽ bên. Biết:
\(\widehat {xAC}\)= 120°; \(\widehat {ACB}\)= 80°; \(\widehat {CBy}\)= 20°. Chứng minh Ax // By
Câu 4:
Cho hình bình hành ABCD có chu vi là 98 cm. Nếu giảm độ dài cạnh AB là 14 cm, tăng độ dài cạnh AD thêm 7 cm được hình thoi AEGH. Tính độ dài cạnh hình thoi và các cạnh hình bình hành.
Câu 5:
Cho một phép trừ hai số mà tổng của số bị trừ, số trừ và hiệu số bằng 2020. Hiệu số lớn hơn số trừ là 165. Hãy tìm số bị trừ và số trừ của phép tính đó.
Câu 6:
Cho các đa thức P(x) = x3 + ax2 + bx + c và Q(x) = x2 + 2016x + 2017 thỏa mãn P(x) = 0 có 3 nghiệm phân biệt và Q(x) = 0 vô nghiệm.
Chứng minh: P(2017) > 10086.
Câu 7:
Cho phương trình x2 + 3x + m – 4 = 0. Giải phương trình tại m = 4.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận