Cho hai phân số \(\frac{7}{9}\) và \(\frac{5}{{11}}\). Tìm phân số \(\frac{a}{b}\) sao cho đem mỗi phân số đã cho trừ đi \(\frac{a}{b}\) thì được phân số mới có tỉ số là 5.
Cho hai phân số \(\frac{7}{9}\) và \(\frac{5}{{11}}\). Tìm phân số \(\frac{a}{b}\) sao cho đem mỗi phân số đã cho trừ đi \(\frac{a}{b}\) thì được phân số mới có tỉ số là 5.
Quảng cáo
Trả lời:

Lời giải:
Khi đem mỗi phân số đã cho trừ đi phân số a/b thì được 2 phân số mới có hiệu ko thay đổi và bằng \(\frac{7}{9}\)−\(\frac{5}{{11}}\)= \(\frac{{32}}{{99}}\).
Phân số bé mới là \(\frac{{32}}{{99}}\): (5 − 1) × 1 = \(\frac{8}{{99}}\).
Phân số \(\frac{a}{b}\) là \(\frac{5}{{11}}\)−\(\frac{8}{{99}}\)= \(\frac{{37}}{{99}}\).
Vậy phân số \(\frac{a}{b}\) cần tìm là \(\frac{{37}}{{99}}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Lời giải:
Xét ∆ ABC vuông tại A có
AB2 + AC2 = BC2 (định lý Pythagoras)
Suy ra \(\left| {\overrightarrow {BC} } \right| = BC = \sqrt {A{B^2} + A{C^2}} \)
= \(\sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}} \)= 5a
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.