Cho tam giác ABC gọi K là trung điểm BC I là trung điểm AC; AK cắt BI tại G trên ab lấy N sao cho AN= \(\frac{1}{3}\)AB.
a) G là trọng tâm tam giác ABC
b) Chứng minh \[\frac{{BN}}{{BA}} = \frac{{BG}}{{BI}};{\rm{ }}\frac{{AN}}{{NB}} = \frac{{IG}}{{GB}}\].
c) Từ G kẻ đường thẳng song song với BC cắt AB tại H, biết NI = 8 cm. Tính CH.
Cho tam giác ABC gọi K là trung điểm BC I là trung điểm AC; AK cắt BI tại G trên ab lấy N sao cho AN= \(\frac{1}{3}\)AB.
a) G là trọng tâm tam giác ABC
b) Chứng minh \[\frac{{BN}}{{BA}} = \frac{{BG}}{{BI}};{\rm{ }}\frac{{AN}}{{NB}} = \frac{{IG}}{{GB}}\].
c) Từ G kẻ đường thẳng song song với BC cắt AB tại H, biết NI = 8 cm. Tính CH.
Quảng cáo
Trả lời:
a) Ta có I, K là trung điểm AC, BC
AK ∩ BI = GA; G là trọng tâm ΔABC
b) Ta có AN = \(\frac{1}{3}\)AB
Suy ra BN = BA – AN = \(\frac{2}{3}\) AB
Vì G là trọng tâm của ∆ABC nên \(\frac{{BG}}{{BI}}\)= \(\frac{2}{3}\); \(\frac{{BN}}{{AB}} = \frac{2}{3} = \frac{{BG}}{{BI}}\).
Do đó NG // AI nên \(\frac{{AN}}{{NB}} = \frac{{IG}}{{GB}}\).
c) Ta có HG // BC suy ra \(\frac{{HB}}{{BA}} = \frac{{KG}}{{KA}} = \frac{1}{3}\) nên HB = \(\frac{1}{3}\) AB.
Mà HB =\(\frac{1}{3}\)AB nên HN = AB – AN – BH = \(\frac{1}{3}\) AB, suy ra NA = NH.
Khi đó, N là trung điểm AH.
Mà I là trung điểm AC nên NI là đường trung điểm của ∆ACH.
Do đó CH = 2NI = 16.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: SABC = SABD + SACD
\(\frac{1}{2}AB.AC.{\mathop{\rm Sin}\nolimits} A = \frac{1}{2}AB.AD\sin \widehat {BAD} + \frac{1}{2}AC.AD\sin \widehat {CAD}\)
\(2bc.\sin \frac{A}{2}\cos \frac{A}{2} = c.AD\sin \frac{A}{2} + b.AD.sin\frac{A}{2}\)
\(2bc.\sin \frac{A}{2}.\cos \frac{A}{2} = AD.\sin \frac{A}{2}.\left( {b + c} \right)\)
\(AD = \frac{{2bc.\cos \frac{A}{2}}}{{b + c}}\)(đpcm)
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.