Câu hỏi:

09/05/2025 41

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 7 cm; BC = 25 cm.

a) Tính AH, BH, HC.

b) Kẻ HM AB, HN AC. Tính diện tích tứ giác BMNC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tính AH, BH, HC. (ảnh 1)

a) Áp dụng định lí Pythagore vào ABC vuông tại A, ta có

BC2 = AB2 + AC2 hay AC2 = 252 − 72 =576.

Suy ra AC = 24 cm

Xét ∆ABC và ∆HBA có

\(\widehat {BAC} = \widehat {AHC} = 90^\circ \); \[\widehat B\] chung

Do đó ∆ABC HBA (g.g)

Suy ra \(\frac{{AC}}{{AH}} = \frac{{BC}}{{AB}}\) nên \(AH = \frac{{AB \cdot AC}}{{BC}} = \frac{{7 \cdot 24}}{{25}} = 6,72\,\,(cm)\)

Ta có ∆ABC HBA suy ra \(\frac{{AB}}{{BH}} = \frac{{BC}}{{AB}}\)

Nên AB2 = BH . BC, suy ra BH = 1,96 cm

Chứng minh tương tự, ta có AC2 = CH . BC suy ra CH = 23,04 cm.

b) Diện tích tam giác ABC là

\({S_{ABC}} = \frac{1}{2} \cdot AB \cdot AC = \frac{1}{2} \cdot 24 \cdot 7 = 84\,\,(c{m^2})\)

Xét ∆ABH và ∆AHM có

\(\widehat {AHB} = \widehat {AMH} = 90^\circ \); \[\widehat {BAH}\] chung.

Do đó ∆ABH ∆AHM (g.g)

Suy ra \(\frac{{AB}}{{BH}} = \frac{{AH}}{{MH}}\) nên \(MH = \frac{{AH \cdot BH}}{{AB}} = \frac{{6,72 \cdot 1,96}}{7} \approx 1,88\,\,(cm)\).

Khi đó AN = HM ≈ 1,88 cm.

Tương tự, ta tính được \(HN = \frac{{AH \cdot CH}}{{AC}} = \frac{{6,72 \cdot 23,04}}{{24}} \approx 6,45\,\,(cm)\).

Khi đó AM = HN ≈ 6,45 cm.

Diện tích tam giác AMN là:

\({S_{AMN}} = \frac{1}{2} \cdot AM \cdot AN = \frac{1}{2} \cdot 6,45 \cdot 1,88 \approx 5,11\,\,(c{m^2})\)

Diện tích tứ giác BMNC là:

SBMNC = SABC − SAMN ≈ 84 – 5,11 = 78,89 (cm2).

Vậy diện tích tứ giác BMNC khoảng 78,89 cm2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x2 + 3x + m – 4 = 0. Giải phương trình tại m = 4.

Xem đáp án » 09/05/2025 117

Câu 2:

Với các số thực dương a, b, c thỏa mãn a2 + b2 + c2 + 2ab = 1. Tìm giá trị lớn nhất của P = ab + bc + ca – abc.

Xem đáp án » 09/05/2025 83

Câu 3:

Cho tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính độ dài vectơ BC.

Xem đáp án » 09/05/2025 78

Câu 4:

Cho a, b, c > 0 thỏa mãn ab + bc + ca + abc = 4. Chứng minh  \(\sqrt {ab} + \sqrt {bc} + \sqrt {ca} \le 3\)

Xem đáp án » 09/05/2025 69

Câu 5:

Tìm số tự nhiên có 3 chữ số abc biết \(\overline {abc} \) : 11 = a + b + c

Xem đáp án » 09/05/2025 58

Câu 6:

Cho a, b, c là các số nguyên khác 0, a khác c sao cho \({a^2} + \frac{{{a^2}}}{{{b^2} + {c^2}}} = \frac{a}{c}\).

Chứng minh a2 + b2 + c2 không phải số nguyên tố?

Xem đáp án » 09/05/2025 55

Câu 7:

Hãy kể tên các tháng có 30 ngày trong năm 2025.

Xem đáp án » 09/05/2025 55
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay