Câu hỏi:
09/05/2025 41Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 7 cm; BC = 25 cm.
a) Tính AH, BH, HC.
b) Kẻ HM ⊥ AB, HN⊥ AC. Tính diện tích tứ giác BMNC.
Quảng cáo
Trả lời:
a) Áp dụng định lí Pythagore vào ∆ABC vuông tại A, ta có
BC2 = AB2 + AC2 hay AC2 = 252 − 72 =576.
Suy ra AC = 24 cm
Xét ∆ABC và ∆HBA có
\(\widehat {BAC} = \widehat {AHC} = 90^\circ \); \[\widehat B\] chung
Do đó ∆ABC ᔕ ∆HBA (g.g)
Suy ra \(\frac{{AC}}{{AH}} = \frac{{BC}}{{AB}}\) nên \(AH = \frac{{AB \cdot AC}}{{BC}} = \frac{{7 \cdot 24}}{{25}} = 6,72\,\,(cm)\)
Ta có ∆ABC ᔕ ∆HBA suy ra \(\frac{{AB}}{{BH}} = \frac{{BC}}{{AB}}\)
Nên AB2 = BH . BC, suy ra BH = 1,96 cm
Chứng minh tương tự, ta có AC2 = CH . BC suy ra CH = 23,04 cm.
b) Diện tích tam giác ABC là
\({S_{ABC}} = \frac{1}{2} \cdot AB \cdot AC = \frac{1}{2} \cdot 24 \cdot 7 = 84\,\,(c{m^2})\)
Xét ∆ABH và ∆AHM có
\(\widehat {AHB} = \widehat {AMH} = 90^\circ \); \[\widehat {BAH}\] chung.
Do đó ∆ABH ᔕ ∆AHM (g.g)
Suy ra \(\frac{{AB}}{{BH}} = \frac{{AH}}{{MH}}\) nên \(MH = \frac{{AH \cdot BH}}{{AB}} = \frac{{6,72 \cdot 1,96}}{7} \approx 1,88\,\,(cm)\).
Khi đó AN = HM ≈ 1,88 cm.
Tương tự, ta tính được \(HN = \frac{{AH \cdot CH}}{{AC}} = \frac{{6,72 \cdot 23,04}}{{24}} \approx 6,45\,\,(cm)\).
Khi đó AM = HN ≈ 6,45 cm.
Diện tích tam giác AMN là:
\({S_{AMN}} = \frac{1}{2} \cdot AM \cdot AN = \frac{1}{2} \cdot 6,45 \cdot 1,88 \approx 5,11\,\,(c{m^2})\)
Diện tích tứ giác BMNC là:
SBMNC = SABC − SAMN ≈ 84 – 5,11 = 78,89 (cm2).
Vậy diện tích tứ giác BMNC khoảng 78,89 cm2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình x2 + 3x + m – 4 = 0. Giải phương trình tại m = 4.
Câu 2:
Với các số thực dương a, b, c thỏa mãn a2 + b2 + c2 + 2ab = 1. Tìm giá trị lớn nhất của P = ab + bc + ca – abc.
Câu 3:
Cho tam giác ABC vuông tại A có AB = 3a, AC = 4a. Tính độ dài vectơ BC.
Câu 4:
Cho a, b, c > 0 thỏa mãn ab + bc + ca + abc = 4. Chứng minh \(\sqrt {ab} + \sqrt {bc} + \sqrt {ca} \le 3\)
Câu 5:
Tìm số tự nhiên có 3 chữ số abc biết \(\overline {abc} \) : 11 = a + b + c
Câu 6:
Cho a, b, c là các số nguyên khác 0, a khác c sao cho \({a^2} + \frac{{{a^2}}}{{{b^2} + {c^2}}} = \frac{a}{c}\).
Chứng minh a2 + b2 + c2 không phải số nguyên tố?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận