Quảng cáo
Trả lời:
Lời giải:
Ta có: \(\overline {abc} = 11 \times (a + b + c)\)
a ×100 + b × 10 + c = 11 × a + 11 × b + 11 × c
89 × a = b + 10 × c
Vì b và c lớn nhất là 9 nên a = 1 (chỉ có thể bằng 1)
Khi đó: 89 = b + 10 × c
b = 89 −10 × c
Vì b không thể số "âm" và b không thể có 2 chữ số nên c = 8 (Chỉ có thể bằng 8).
Khi đó b = 89 −10 × 8 = 9
b = 9
Vậy số cần tìm là 198
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Lời giải:
ĐK: cos 3x ≠ 0 ⟺ cos 3x ≠ 1
⟺ 3x ≠ k2π ⟺ x ≠ \(\frac{{k2\pi }}{3}\)(k ∈ ℤ)
Ta có \[\frac{{\sin 3x}}{{\cos (3x - 1)}} = 0\]
⟺ sin3x = 0
⟺ sin3x = kπ
⟺ x = \(\frac{{k\pi }}{3}\)(k ∈ ℤ)
Kết hợp điều kiện x = \(\frac{\pi }{3} + \frac{{k2\pi }}{3}\) (k ∈ ℤ)
Vậy phương trình đã cho có nghiệm là \(x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\,\,(k \in {\rm{ }}\mathbb{Z})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

