Gia đình An muốn xây dựng một bể chứa nước hình trụ có thể tích 150 m3. Đáy bể làm bằng bê tông giá 100 000 đồng/m2. Phần thân làm bằng vật liệu chống thấm giá 90 000 đồng/m2, nắp bằng nhôm giá 120 000 đồng/m2. Hỏi tỷ lệ số giữa chiều cao bể và bán kính đáy là bao nhiêu để chi phí sản xuất bể đạt giá trị nhỏ nhất?
A. \(\frac{{31}}{{22}}\).
B. \(\frac{{22}}{{31}}\).
C. \(\frac{9}{{22}}\).
D. \(\frac{{22}}{9}\).
Gia đình An muốn xây dựng một bể chứa nước hình trụ có thể tích 150 m3. Đáy bể làm bằng bê tông giá 100 000 đồng/m2. Phần thân làm bằng vật liệu chống thấm giá 90 000 đồng/m2, nắp bằng nhôm giá 120 000 đồng/m2. Hỏi tỷ lệ số giữa chiều cao bể và bán kính đáy là bao nhiêu để chi phí sản xuất bể đạt giá trị nhỏ nhất?
A. \(\frac{{31}}{{22}}\).
B. \(\frac{{22}}{{31}}\).
C. \(\frac{9}{{22}}\).
D. \(\frac{{22}}{9}\).
Quảng cáo
Trả lời:
Lời giải:
Đáp án đúng là: D
Gọi R, h lần lượt là bán kính đáy và chiều cao hình trụ.
Ta có Sxp = 2πRh; Sđ = πR2 ; V = πR2h
Ta có V = 150 m3 suy ra πR2h =150 m3 nên h = \(\frac{{150}}{{\pi {R^2}}}\)
Tổng số tiền để chi trả vật liệu là:
T = πR2 .(100 + 120) + 2πRh.90
T = 220 πR2 + \(\frac{{2700}}{R}\) mà h = \(\frac{{150}}{{\pi {R^2}}}\)
Suy ra \(T' = 440\pi R - \frac{{2700}}{R} = 0\)
R3 = \(\frac{{675}}{{11\pi }}\)
Khi đó \(\frac{h}{R} = \frac{{150}}{{\pi {R^3}}} = \frac{{22}}{3}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Ta có: A = [−4; 2] và B = [−8; a + 2].
Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.
Suy ra −6 < a < 0 hoăc a > 0.
Lời giải
Lời giải:
ĐK: cos 3x ≠ 0 ⟺ cos 3x ≠ 1
⟺ 3x ≠ k2π ⟺ x ≠ \(\frac{{k2\pi }}{3}\)(k ∈ ℤ)
Ta có \[\frac{{\sin 3x}}{{\cos (3x - 1)}} = 0\]
⟺ sin3x = 0
⟺ sin3x = kπ
⟺ x = \(\frac{{k\pi }}{3}\)(k ∈ ℤ)
Kết hợp điều kiện x = \(\frac{\pi }{3} + \frac{{k2\pi }}{3}\) (k ∈ ℤ)
Vậy phương trình đã cho có nghiệm là \(x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\,\,(k \in {\rm{ }}\mathbb{Z})\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

