Câu hỏi:

19/08/2025 66 Lưu

Tính \(B = \frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} + ..... + {\left( {\frac{1}{2}} \right)^{98}} + {\left( {\frac{1}{2}} \right)^{99}}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải:

\(2B = 1 + \frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} + ..... + {\left( {\frac{1}{2}} \right)^{97}} + {\left( {\frac{1}{2}} \right)^{98}}\)

\(\begin{array}{l}2B - B = \left[ {1 + \frac{1}{2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^3} + {{\left( {\frac{1}{2}} \right)}^4} + ..... + {{\left( {\frac{1}{2}} \right)}^{97}} + {{\left( {\frac{1}{2}} \right)}^{98}}} \right]\\ - \left[ {\frac{1}{2} + {{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^3} + {{\left( {\frac{1}{2}} \right)}^4} + ..... + {{\left( {\frac{1}{2}} \right)}^{98}} + {{\left( {\frac{1}{2}} \right)}^{99}}} \right]\end{array}\)

\(B = 1 - {\left( {\frac{1}{2}} \right)^{90}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Ta có: A = [−4; 2] và B = [−8; a + 2].

Mà A ∩ B có vô số phần tử nên −4 < a + 2 < 2 hoặc 2 < a + 2.

Suy ra −6 < a < 0 hoăc a > 0.

Lời giải

Lời giải:

ĐK: cos 3x ≠ 0 cos 3x ≠ 1

3x ≠ k2π x ≠ \(\frac{{k2\pi }}{3}\)(k ℤ)

Ta có \[\frac{{\sin 3x}}{{\cos (3x - 1)}} = 0\]

sin3x = 0

sin3x = kπ

x = \(\frac{{k\pi }}{3}\)(k ℤ)

Kết hợp điều kiện x = \(\frac{\pi }{3} + \frac{{k2\pi }}{3}\) (k ℤ)

Vậy phương trình đã cho có nghiệm là \(x = \frac{\pi }{3} + \frac{{k2\pi }}{3}\,\,(k \in {\rm{ }}\mathbb{Z})\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP