Câu hỏi:

10/05/2025 53 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi H, I, K lần lượt là trung điểm của SA, SB, SC, M là giao điểm của AI và KD, N là giao điểm của DH và CI.

a) Chứng minh rằng SM // (ABCD).

b) Chứng minh rằng (SMN) // (ABCD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Chứng minh rằng SM // (ABCD). (ảnh 1) 

a) Vì \(\left\{ \begin{array}{l}M \in AI,{\rm{ }}AI \subset \left( {SAB} \right)\\M \in DK,\,\,DK \subset \left( {SCD} \right)\end{array} \right.\) nên \(M \in (SAB) \cap (SCD)\)

Suy ra \(SM = (SAB) \cap (SCD).\)

Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD)}\\{AB\,{\rm{//}}\,CD}\end{array}} \right.\) suy ra \(SM\,{\rm{//}}\,AB\,{\rm{//}}\,CD\)

Mà AB (ABCD) nên SM // (ABCD).

b) Chứng minh tương tự ta có SN // (ABCD) mà SM SN tại S (SMN) nên (SMN) // (ABCD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Tính khoảng cách từ C đến (SBD). (ảnh 1) 

ABCD là hình vuông nên OA = OC

Suy ra d(A, (SBD)) = d(C, (SBD))

Kẻ AH SO

BD AO, BD SA nên BD (SAO).

Suy ra BD AH.

AH (SBD) nên d(A,(SBD)) = AH

Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]

SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]

Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]

Lời giải

Lời giải:

Đáp án đúng là: A

Thay x = 4 vào hàm số y = 2x ‒ 5, ta được: y = 2 . 4 ‒ 5 = 3.

Do đó điểm (4; 3) thuộc đồ thị hàm số y = 2x – 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP