Cho tam giác ABC có \(\widehat {A\,} = 60^\circ .\) Vẽ ra ngoài của tam giác hai tam giác đều AMB và ANC.
a) Chứng minh rằng 3 điểm A, M, N thẳng hàng.
b) Chứng minh BN = CM.
Cho tam giác ABC có \(\widehat {A\,} = 60^\circ .\) Vẽ ra ngoài của tam giác hai tam giác đều AMB và ANC.
a) Chứng minh rằng 3 điểm A, M, N thẳng hàng.
b) Chứng minh BN = CM.
Quảng cáo
Trả lời:

Lời giải:
a) Vì ∆AMB đều nên \(\widehat {MAB} = 60^\circ .\)
Vì ∆ANC đều nên \(\widehat {NAC} = 60^\circ .\)
Ta có: \[\widehat {MAN} = \widehat {MAB} + \widehat {BAC} + \widehat {NAC}\]
Suy ra \(\widehat {MAN} = 60^\circ + 60^\circ + 60^\circ = 180^\circ \)
Do đó M, A, N thẳng hàng.
b) Ta có:
⦁ \(\widehat {MAC} = \widehat {MAB} + \widehat {BAC} = 60^\circ + 60^\circ = 120^\circ \)
⦁ \(\widehat {NAB} = \widehat {NAC} + \widehat {BAC} = 60^\circ + 60^\circ = 120^\circ \)
Suy ra \[\widehat {MAC} = \widehat {NAB}\]
Xét ∆MAC và ∆BAN có:
MA = AB (do tam giác AMB đều)
\[\widehat {MAC} = \widehat {NAB}\] (cmt)
AC = NA (do tam giác ANC đều)
Do đó ∆MAC = ∆BAN (c.g.c)
Suy ra MC = BN (hai cạnh tương ứng).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì ΔBHC vuông tại H nên H nằm trên đường tròn đường kính BC
Do đó H nằm trên (O) đường kính BC.
Vì ΔBKC vuông tại K nên K nằm trên đường tròn đường kính BC
Do đó K nằm trên (O) đường kính BC.
b) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có:
BC là cạnh chung
\[\widehat {KBC} = \widehat {HCB}\] (ΔABC cân tại A)
Do đó: ΔKBC = ΔHCB (cạnh huyền – góc nhọn)
Xét (O) có:
\[\widehat {KCB}\] là góc nội tiếp chắn cung BK
\[\widehat {HBC}\] là góc nội tiếp chắn cung HC
Mà \[\widehat {KCB} = \widehat {HBC}\] nên
c) Xét ∆ABH vuông tại H, ta có: \[\widehat {ABH} + \widehat {BAH} = 90^\circ \]
Suy ra \[\widehat {ABH} = 90^\circ - \widehat {BAH} = 90^\circ - 40^\circ = 50^\circ .\]
Lại có \(\widehat {KBH}\) là góc nội tiếp chắn cung KH của đường tròn (O)Lời giải
Lời giải:
ABCD là hình vuông nên OA = OC
Suy ra d(A, (SBD)) = d(C, (SBD))
Kẻ AH ⊥ SO
BD ⊥ AO, BD ⊥ SA nên BD ⊥ (SAO).
Suy ra BD ⊥ AH.
AH ⊥ (SBD) nên d(A,(SBD)) = AH
Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]
SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]
Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.