Câu hỏi:

10/05/2025 39

Cho tam giác ABC nhọn, lấy điểm M là trung điểm của cạnh AB, lấy điểm N là trung điểm của cạnh AC. Trên tia đối của tia NM lấy điểm Qsao cho NM = NQ. Chứng minh rằng:

a) Hai tam giác AMN và CQN bằng nhau.

b) MB song song với QC.

c) \[MN = \frac{1}{2}BC.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Hai tam giác AMN và CQN bằng nhau. (ảnh 1) 

a) Xét ∆AMN và ∆CQN có:

AN = NC (do N là trung điểm của AC)

\[\widehat {ANM} = \widehat {CNQ}\] (đối đỉnh)

NM = NQ (gt)

Do đóAMN = ∆CQN (c-g-c).

b) Do ∆AMN = ∆CQN (câu a)

Suy ra \[\widehat {MAN} = \widehat {NCQ}\] (hai góc tương ứng)

\[\widehat {MAN},\,\,\widehat {NCQ}\] là hai góc so le trong nên AM // CQ

Suy ra MB // CQ.

c) Do ∆AMN = ∆CQN (câu a)

Suy ra AM = CQ (hai cạnh tương ứng)

Mà AM = MB (do M là trung điểm của AB) nên MB = CQ

Do BM // CQ (câu b) nên \[\widehat {BMC} = \widehat {QCM}\] (so le trong)

Xét ∆BMC và ∆QCM có:

BM = CQ,

\[\widehat {BMC} = \widehat {QCM}\],

CM là cạnh chung

Do đóBMC = ∆QCM (c-g-c)

Suy ra BC = MQ (hai cạnh tương ứng)

Do NM = NQ nên \[MN = \frac{1}{2}MQ\]

Mà BC = MQ (cmt) nên \[MN = \frac{1}{2}BC.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Tính khoảng cách từ C đến (SBD). (ảnh 1) 

ABCD là hình vuông nên OA = OC

Suy ra d(A, (SBD)) = d(C, (SBD))

Kẻ AH SO

BD AO, BD SA nên BD (SAO).

Suy ra BD AH.

AH (SBD) nên d(A,(SBD)) = AH

Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]

SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]

Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]

Lời giải

Lời giải:

Ta có: f(0) = a.02 + b.0 + c = c

f(1) = a.12 + b.1 + c = a + b + c 

Nên a + b 

f(2) = a.22 + b.2 + c = 4a + 2b + c 

mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a + b) + c

Nên 2a  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay