Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Gọi P là giao điểm của BE và DF. Chứng minh rằng:
a) H là giao điểm của 3 đường phân giác của tam giác DEF.
b) \[\frac{{HP}}{{HE}} = \frac{{BP}}{{BE}}.\]
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Gọi P là giao điểm của BE và DF. Chứng minh rằng:
a) H là giao điểm của 3 đường phân giác của tam giác DEF.
b) \[\frac{{HP}}{{HE}} = \frac{{BP}}{{BE}}.\]
Quảng cáo
Trả lời:

Lời giải:
a) Xét tứ giác BFHD có: \(\widehat {BFH} = \widehat {BDH} = 90^\circ \)
Suy ra BFHD là tứ giác nội tiếp, do đó \[\widehat {FDH} = \widehat {FBH}\] (hai góc nội tiếp cùng chắn cung HF)
Xét tứ giác CEHD có \(\widehat {CEH} = \widehat {CDH} = 90^\circ \)
Suy ra CEHD là tứ giác nội tiếp, do đó \[\widehat {EDH} = \widehat {ECH}\] (hai góc nội tiếp cùng chắn cung EH)
Mà góc \[\widehat {FBH} = \widehat {ECH}\] (cùng phụ với góc BAC)
Nên \[\widehat {FDH} = \widehat {EDH}\]
Suy ra DH là phân giác của \[\widehat {FDE}\].
Chứng minh tương tự, ta có EH là tia phân giác của \(\widehat {FED}\)
Do đó H là giao điểm của 3 đường phân giác của tam giác DEF.
b) Xét ∆DPEA có DH là phân giác của \[\widehat {PDE}\] nên \[\frac{{HP}}{{HE}} = \frac{{DP}}{{DE}}.\]
Lại có DH ⊥ DB nên DB là tia phân giác của góc ngoài của ∆PDE tại đỉnh D.
Do đó \(\frac{{DP}}{{DE}} = \frac{{BP}}{{BE}}\)
Suy ra \[\frac{{HP}}{{HE}} = \frac{{BP}}{{BE}}.\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Vì ΔBHC vuông tại H nên H nằm trên đường tròn đường kính BC
Do đó H nằm trên (O) đường kính BC.
Vì ΔBKC vuông tại K nên K nằm trên đường tròn đường kính BC
Do đó K nằm trên (O) đường kính BC.
b) Xét ΔKBC vuông tại K và ΔHCB vuông tại H có:
BC là cạnh chung
\[\widehat {KBC} = \widehat {HCB}\] (ΔABC cân tại A)
Do đó: ΔKBC = ΔHCB (cạnh huyền – góc nhọn)
Xét (O) có:
\[\widehat {KCB}\] là góc nội tiếp chắn cung BK
\[\widehat {HBC}\] là góc nội tiếp chắn cung HC
Mà \[\widehat {KCB} = \widehat {HBC}\] nên
c) Xét ∆ABH vuông tại H, ta có: \[\widehat {ABH} + \widehat {BAH} = 90^\circ \]
Suy ra \[\widehat {ABH} = 90^\circ - \widehat {BAH} = 90^\circ - 40^\circ = 50^\circ .\]
Lại có \(\widehat {KBH}\) là góc nội tiếp chắn cung KH của đường tròn (O)Lời giải
Lời giải:
ABCD là hình vuông nên OA = OC
Suy ra d(A, (SBD)) = d(C, (SBD))
Kẻ AH ⊥ SO
BD ⊥ AO, BD ⊥ SA nên BD ⊥ (SAO).
Suy ra BD ⊥ AH.
AH ⊥ (SBD) nên d(A,(SBD)) = AH
Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]
SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]
Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.