Câu hỏi:

10/05/2025 104

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H. Gọi P là giao điểm của BE và DF. Chứng minh rằng:

a) H là giao điểm của 3 đường phân giác của tam giác DEF.

b) \[\frac{{HP}}{{HE}} = \frac{{BP}}{{BE}}.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) H là giao điểm của 3 đường phân giác của tam giác DEF. (ảnh 1) 

 a) Xét tứ giác BFHD có: \(\widehat {BFH} = \widehat {BDH} = 90^\circ \)

Suy ra BFHD là tứ giác nội tiếp, do đó \[\widehat {FDH} = \widehat {FBH}\] (hai góc nội tiếp cùng chắn cung HF)

Xét tứ giác CEHD có \(\widehat {CEH} = \widehat {CDH} = 90^\circ \)

Suy ra CEHD là tứ giác nội tiếp, do đó \[\widehat {EDH} = \widehat {ECH}\] (hai góc nội tiếp cùng chắn cung EH)

Mà góc \[\widehat {FBH} = \widehat {ECH}\] (cùng phụ với góc BAC)

Nên \[\widehat {FDH} = \widehat {EDH}\]

Suy ra DH là phân giác của \[\widehat {FDE}\].

Chứng minh tương tự, ta có EH là tia phân giác của \(\widehat {FED}\)

Do đó H là giao điểm của 3 đường phân giác của tam giác DEF.

b) Xét ∆DPEA có DH là phân giác của \[\widehat {PDE}\] nên \[\frac{{HP}}{{HE}} = \frac{{DP}}{{DE}}.\]

Lại có DH DB nên DB là tia phân giác của góc ngoài của ∆PDE tại đỉnh D.

Do đó \(\frac{{DP}}{{DE}} = \frac{{BP}}{{BE}}\)

Suy ra \[\frac{{HP}}{{HE}} = \frac{{BP}}{{BE}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Tính khoảng cách từ C đến (SBD). (ảnh 1) 

ABCD là hình vuông nên OA = OC

Suy ra d(A, (SBD)) = d(C, (SBD))

Kẻ AH SO

BD AO, BD SA nên BD (SAO).

Suy ra BD AH.

AH (SBD) nên d(A,(SBD)) = AH

Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]

SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]

Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]

Lời giải

Lời giải:

Ta có: f(0) = a.02 + b.0 + c = c

f(1) = a.12 + b.1 + c = a + b + c 

Nên a + b 

f(2) = a.22 + b.2 + c = 4a + 2b + c 

mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a + b) + c

Nên 2a  .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay