Quảng cáo
Trả lời:

Lời giải:
Một số cách chứng minh 3 đường thẳng đồng quy
1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó.
2. Chứng minh một điểm thuộc ba đường thẳng đó.
3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.
4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.
5. Sử dụng chứng minh phản chứng
6. Sử dụng tính thẳng hàng của các điểm
7. Chứng minh các đường thẳng đều đi qua một điểm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
ABCD là hình vuông nên OA = OC
Suy ra d(A, (SBD)) = d(C, (SBD))
Kẻ AH ⊥ SO
BD ⊥ AO, BD ⊥ SA nên BD ⊥ (SAO).
Suy ra BD ⊥ AH.
AH ⊥ (SBD) nên d(A,(SBD)) = AH
Xét tam giác SAO: \[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{O^2}}}\]
SA = 3a, \[AO = a\sqrt 2 \], suy ra \[AH = \frac{{3a\sqrt {22} }}{{11}}\]
Vậy khoảng cách từ C đến (SBD) bằng \[\frac{{3a\sqrt {22} }}{{11}}.\]
Lời giải
Lời giải:
Đáp án đúng là: A
Thay x = 4 vào hàm số y = 2x ‒ 5, ta được: y = 2 . 4 ‒ 5 = 3.
Do đó điểm (4; 3) thuộc đồ thị hàm số y = 2x – 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.