Câu hỏi:
18/05/2025 10Câu hỏi trong đề: 22 bài tập Phương trình lượng giác cơ bản có lời giải !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Đặt \(x + \frac{\pi }{4} = \alpha \). Khi đó ta có phương trình \({\rm{sin}}\alpha = \frac{{\sqrt 2 }}{2}\).
Xét đường thẳng \({\rm{y}} = \frac{{\sqrt 2 }}{2}\) và đồ thị hàm số \(y = \sin a\) trên đoạn \(\left[ {0;\pi } \right]\):
Từ đồ thị hàm số trên ta thấy đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) cắt đồ thị số \(y = \sin a\) trên đoạn \(\left[ {0;\,\,\pi } \right]\) tại hai điểm có hoành độ lần lượt là \({\alpha _1} = \frac{\pi }{4}\) và \({\alpha _2} = \frac{{3\pi }}{4}\).
Mà \(x + \frac{\pi }{4} = \alpha \), khi đó ta sẽ tìm được 2 giá trị \(x\) là \({x_1} = 0\) và \({x_2} = \frac{\pi }{2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 244
Đã bán 104
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\).
Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Câu 2:
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho phương trình \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0\).
a) Phương trình đã cho tương đương với phương trình \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( {\frac{\pi }{3}} \right)\).
b) Phương trình đã cho có nghiệm là: \(x = \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{7\pi }}{{12}} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Phương trình đã cho có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).
d) Số nghiệm của phương trình đã cho trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.
Câu 3:
Cho phương trình \(\tan \left( {2x - 15^\circ } \right) = 1\) (*).
a) Phương trình (*) có nghiệm \(x = 30^\circ + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).
b) Phương trình có nghiệm âm lớn nhất bằng \( - 30^\circ \).
c) Tổng các nghiệm của phương trình trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\) bằng \(180^\circ \).
d) Trong khoảng \(\left( { - 180^\circ ;90^\circ } \right)\), phương trình có nghiệm lớn nhất bằng \(60^\circ \).
Câu 4:
Câu 5:
Cho phương trình \(\sqrt 2 \cos \left( {2x + \frac{\pi }{4}} \right) - 1 = 0\,\,\,\,\left( 1 \right)\)
a) Phương trình \(\left( 1 \right) \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4}} \right)\,.\)
b) Phương trình \(\left( 1 \right)\) có nghiệm \(x = k2\pi ;x = - \frac{\pi }{4} + k2\pi \left( {k \in \mathbb{Z}} \right).\)
c) Trên khoảng \(\left( {0;\pi } \right)\) phương trình \(\left( 1 \right)\) có tập nghiệm là \(S = \left\{ {\frac{{3\pi }}{4}} \right\}.\)
d) Tổng các nghiệm của phương trình \(\left( 1 \right)\) trong khoảng \(\left( { - 3\pi ;3\pi } \right)\) là \(3\pi .\)
Câu 6:
Cho phương trình \({\sin ^2}\left( {2x + \frac{\pi }{4}} \right) = {\cos ^2}\left( {x + \frac{\pi }{2}} \right)\).
a) Hạ bậc hai vế, ta được phương trình \(\frac{{1 + \cos \left( {4x + \frac{\pi }{2}} \right)}}{2} = \frac{{1 - \cos \left( {2x + \pi } \right)}}{2}\).
b) Ta có \(\cos \left( {2x + \pi } \right) = - \cos 2x\).
c) Phương trình đã cho đưa về dạng \(\cos \left( {4x + \frac{\pi }{2}} \right) = \cos 2x\).
d) Nghiệm của phương trình đã cho là \(x = - \frac{\pi }{4} + k\pi \) và
Câu 7:
PHẦN III. TRẢ LỜI NGẮN
Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sâu \[h\,\,\left( {\rm{m}} \right)\] của mực nước trong kênh tính theo thời gian \[t\left( h \right)\] được cho bởi công thức \[h = 3\sin \left( {\frac{{\pi t}}{4} + \frac{\pi }{3}} \right) + 14\]. Thời gian ngắn nhất để mực nước của kênh cao nhất là \[t = \frac{a}{b}\]. Tính \[a.b\]?
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận