Câu hỏi:

18/05/2025 179 Lưu

Số nghiệm của phương trình \({\rm{sin}}\left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\) trên đoạn \(\left[ {0;\pi } \right]\) là:

A. 4.                               
B. 1.                              
C. 2.                                    
D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Đặt \(x + \frac{\pi }{4} = \alpha \). Khi đó ta có phương trình \({\rm{sin}}\alpha  = \frac{{\sqrt 2 }}{2}\).

b (ảnh 1)

Xét đường thẳng \({\rm{y}} = \frac{{\sqrt 2 }}{2}\) và đồ thị hàm số \(y = \sin a\) trên đoạn \(\left[ {0;\pi } \right]\):

Từ đồ thị hàm số trên ta thấy đường thẳng \(y = \frac{{\sqrt 2 }}{2}\) cắt đồ thị số \(y = \sin a\) trên đoạn \(\left[ {0;\,\,\pi } \right]\) tại hai điểm có hoành độ lần lượt là \({\alpha _1} = \frac{\pi }{4}\) và \({\alpha _2} = \frac{{3\pi }}{4}\).

Mà \(x + \frac{\pi }{4} = \alpha \), khi đó ta sẽ tìm được 2 giá trị \(x\) là \({x_1} = 0\) và \({x_2} = \frac{\pi }{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)

\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).

Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).

Vì kk0;1;2;3;4;5;6;7;8

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

Đáp án: \(9\).

Lời giải

Ta có \(\tan \left( {2x - 15^\circ } \right) = 1 \Leftrightarrow 2x - 15^\circ  = 45^\circ  + k90^\circ  \Leftrightarrow x = 30^\circ  + k90^\circ \,\,\left( {k \in \mathbb{Z}} \right)\).

Với \(k =  - 1\), ta có \(x =  - 60^\circ \) là nghiệm âm lớn nhất của phương trình (*).

\( - 180^\circ  < x < 90^\circ  \Rightarrow  - 180^\circ  < 30^\circ  + k90^\circ  < 90^\circ \,\,\left( {k \in \mathbb{Z}} \right) \Rightarrow k \in \left\{ { - 2; - 1;0} \right\}\)\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 150^\circ }\\{x =  - 60^\circ }\\{x = 30^\circ }\end{array}} \right.\).

Đáp án:           a) Đúng,          b) Sai,             c) Sai,              d) Sai.

Câu 6

A. \(m \le 1\).                  
B. \(m \ge  - 1\).            
C. \( - 1 \le m \le 1\).                              
D. \(m \le  - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP