Câu hỏi:
18/05/2025 88
Cho hàm số \(y = \sin \left( {x - \frac{\pi }{4}} \right)\) và hàm số\(y = \cos \left( {\frac{\pi }{2} - x} \right)\).
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số đã cho \(\sin \left( {x - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{2} - x} \right)\).
b) Hoành độ giao điểm của hai đồ thị hàm số đã cho là \(x = \frac{{5\pi }}{8} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
c) Điểm \(M\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right)\) là một giao điểm của hai đồ thị hàm số đã cho trên \(\left[ {0\,;2\pi } \right]\).
d) Khi \(x \in \left[ {0\,;3\pi } \right]\) thì hai đồ thị hàm số đã cho cắt nhau tại ba điểm lần lượt \[A,B,C\]gọi \[I\]là trung điểm của \[AC\]thì \[I\left( {\frac{{13\pi }}{{16}};\sin \left( {\frac{{13\pi }}{4}} \right)} \right)\].
Cho hàm số \(y = \sin \left( {x - \frac{\pi }{4}} \right)\) và hàm số\(y = \cos \left( {\frac{\pi }{2} - x} \right)\).
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số đã cho \(\sin \left( {x - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{2} - x} \right)\).
b) Hoành độ giao điểm của hai đồ thị hàm số đã cho là \(x = \frac{{5\pi }}{8} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
c) Điểm \(M\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right)\) là một giao điểm của hai đồ thị hàm số đã cho trên \(\left[ {0\,;2\pi } \right]\).
d) Khi \(x \in \left[ {0\,;3\pi } \right]\) thì hai đồ thị hàm số đã cho cắt nhau tại ba điểm lần lượt \[A,B,C\]gọi \[I\]là trung điểm của \[AC\]thì \[I\left( {\frac{{13\pi }}{{16}};\sin \left( {\frac{{13\pi }}{4}} \right)} \right)\].
Quảng cáo
Trả lời:
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
\[\begin{array}{l}\sin \left( {x - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{2} - x} \right) \Leftrightarrow \sin \left( {x - \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{4} = x + k2\pi }\\{x - \frac{\pi }{4} = \pi - x + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\\ \Leftrightarrow 2x = \frac{{5\pi }}{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{5\pi }}{8} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\end{array}\]
Vì \[x \in \left[ {0\,;2\pi } \right] \Rightarrow x \in \left\{ {\frac{{5\pi }}{8};\frac{{13\pi }}{8}} \right\}\].
Với \[x = \frac{{5\pi }}{8} \Rightarrow y = \sin \frac{{5\pi }}{8} \Rightarrow A\left( {\frac{{5\pi }}{8};\sin \frac{{5\pi }}{8}} \right)\],
với \[x = \frac{{13\pi }}{8} \Rightarrow y = \sin \frac{{13\pi }}{8} \Rightarrow B\left( {\frac{{13\pi }}{8};\sin \frac{{13\pi }}{8}} \right)\],
với \[x = \frac{{21\pi }}{8} \Rightarrow y = \sin \frac{{21\pi }}{8} \Rightarrow C\left( {\frac{{21\pi }}{8};\sin \frac{{21\pi }}{8}} \right)\].
Vì \[I\]là trung điểm của \[AC\]
\[ \Rightarrow I\left( {\frac{{13\pi }}{{16}};\frac{{\sin \left( {\frac{{5\pi }}{8}} \right) + \sin \left( {\frac{{21\pi }}{8}} \right)}}{2}} \right) = \left( {\frac{{13\pi }}{{16}};\frac{{2.\sin \left( {\frac{{13\pi }}{4}} \right).\cos \left( { - 2\pi } \right)}}{2}} \right) = \left( {\frac{{13\pi }}{{16}};\sin \left( {\frac{{13\pi }}{4}} \right)} \right)\].
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)
\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).
Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).
Vì
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Đáp án: \(9\).
Lời giải
Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{{12}} = - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).
Vậy phương trình có nghiệm là: \[x = - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }}{{12}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).
Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.