Câu hỏi:

18/05/2025 90

Một vật \(M\) được gắn vào đầu lò xo và dao động quanh vị trí cân bằng \(I\), biết rằng \(O\) là hình chiếu vuông góc của \(I\) trên trục \(Ox\), toạ độ điểm \(M\) trên \(Ox\) tại thời điểm \(t\) (giây) là đại lượng \(s\) (đơn vị: cm) được tính bởi công thức \(s = 8,6\cos \left( {8t + \frac{\pi }{2}} \right)\).  Tại mấy thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm?

c (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi \(s = 4,3\) thì \(8,6\cos \left( {8t + \frac{\pi }{2}} \right) = 4,3 \Rightarrow \cos \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{8t + \frac{\pi }{2} = \frac{\pi }{3} + k2\pi }\\{8t + \frac{\pi }{2} =  - \frac{\pi }{3} + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t =  - \frac{\pi }{{48}} + k\frac{\pi }{4}}\\{t =  - \frac{{5\pi }}{{48}} + k\frac{\pi }{4}}\end{array}(k \in \mathbb{Z}).} \right.} \right.\)

Vì \(t \in \left( {0\,;2} \right)\) nên có \(4\) giá trị \(t\) thoả mãn là: \({t_1} \approx 0,72\;s;{t_2} \approx 1,51\;s;{t_3} \approx 0,46\;s;\,{t_4} \approx 0,1,24\;s\).

Vậy tại 4 thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm.

Đáp án: 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)

\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).

Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).

Vì kk0;1;2;3;4;5;6;7;8

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

Đáp án: \(9\).

Lời giải

Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3  = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{{12}} =  - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi  - \left( { - \frac{\pi }{3}} \right) + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).

Vậy phương trình có nghiệm là: \[x =  - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }}{{12}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].

Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).

Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.

Đáp án:           a) Sai,             b) Sai,             c) Đúng,          d) Đúng.

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP