Câu hỏi:
18/05/2025 90
Một vật \(M\) được gắn vào đầu lò xo và dao động quanh vị trí cân bằng \(I\), biết rằng \(O\) là hình chiếu vuông góc của \(I\) trên trục \(Ox\), toạ độ điểm \(M\) trên \(Ox\) tại thời điểm \(t\) (giây) là đại lượng \(s\) (đơn vị: cm) được tính bởi công thức \(s = 8,6\cos \left( {8t + \frac{\pi }{2}} \right)\). Tại mấy thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm?

Một vật \(M\) được gắn vào đầu lò xo và dao động quanh vị trí cân bằng \(I\), biết rằng \(O\) là hình chiếu vuông góc của \(I\) trên trục \(Ox\), toạ độ điểm \(M\) trên \(Ox\) tại thời điểm \(t\) (giây) là đại lượng \(s\) (đơn vị: cm) được tính bởi công thức \(s = 8,6\cos \left( {8t + \frac{\pi }{2}} \right)\). Tại mấy thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm?
Quảng cáo
Trả lời:
Khi \(s = 4,3\) thì \(8,6\cos \left( {8t + \frac{\pi }{2}} \right) = 4,3 \Rightarrow \cos \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{8t + \frac{\pi }{2} = \frac{\pi }{3} + k2\pi }\\{8t + \frac{\pi }{2} = - \frac{\pi }{3} + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = - \frac{\pi }{{48}} + k\frac{\pi }{4}}\\{t = - \frac{{5\pi }}{{48}} + k\frac{\pi }{4}}\end{array}(k \in \mathbb{Z}).} \right.} \right.\)
Vì \(t \in \left( {0\,;2} \right)\) nên có \(4\) giá trị \(t\) thoả mãn là: \({t_1} \approx 0,72\;s;{t_2} \approx 1,51\;s;{t_3} \approx 0,46\;s;\,{t_4} \approx 0,1,24\;s\).
Vậy tại 4 thời điểm trong khoảng 2 giây đầu tiên thì \(s = 4,3\;\) cm.
Đáp án: 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Khi vật đi qua vị trí cân bằng thì \(x = 0\), ta có:
\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)
\( \Leftrightarrow 5t = \frac{{2\pi }}{3} + k\pi \) , \(k \in \mathbb{Z}\)\( \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5}\),\(k \in \mathbb{Z}\).
Trong khoảng thời gian từ 0 đến 6 giây, ta có: \(0 \le \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le 6\)\( \Leftrightarrow \frac{{ - 2}}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\).
Vì
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Đáp án: \(9\).
Lời giải
Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{{12}} = - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi - \left( { - \frac{\pi }{3}} \right) + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).
Vậy phương trình có nghiệm là: \[x = - \frac{\pi }{4} + k2\pi ;\,\,x = \frac{{17\pi }}{{12}} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\).
Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.