Câu hỏi:

19/05/2025 82

Cho phương trình \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right)\) (*).

a) Phương trình có nghiệm: \(x = \pi  + k2\pi \) và \(x = \frac{\pi }{6} + k\frac{{2\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\).

b) Trong khoảng \(\left( {0;\pi } \right)\), phương trình có 2 nghiệm.

c) Tổng các nghiệm của phương trình trong khoảng \(\left( {0;\pi } \right)\) bằng \(\frac{{7\pi }}{6}\).

d) Trong khoảng \(\left( {0;\pi } \right)\), phương trình có nghiệm lớn nhất bằng \(\frac{{5\pi }}{6}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Có \(\sin \left( {2x - \frac{\pi }{4}} \right) = \sin \left( {x + \frac{{3\pi }}{4}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x - \frac{\pi }{4} = x + \frac{{3\pi }}{4} + k2\pi }\\{2x - \frac{\pi }{4} = \frac{\pi }{4} - x + k2\pi }\end{array}} \right.\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \pi  + k2\pi }\\{x = \frac{\pi }{6} + k\frac{{2\pi }}{3}}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.\).

\({\rm{V\`i  }}x \in \left( {0;\pi } \right){\rm{ n\^e n }}\,x \in \left\{ {\frac{\pi }{6};\frac{{5\pi }}{6}} \right\}\). Ta có \(\frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \).

Đáp án:           a) Đúng,          b) Đúng,         c) Sai,              d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

+) \[\tan x = 2018\] có nghiệm.

+) \[\sin x = \pi \]  vô nghiệm do \(\pi  > 1\).

+) \[\cos x = \frac{{2017}}{{2018}}\] có nghiệm do \( - 1 < \frac{{2017}}{{2018}} < 1\).

+) \[\sin x + \cos x = \sqrt 2 \]\[ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 1\]\[ \Leftrightarrow x = \frac{\pi }{4} + k2\pi \], \[\left( {k \in \mathbb{Z}} \right)\].

Câu 2

Lời giải

Đáp án đúng là: A

Ta có \[\cos \frac{\pi }{{30}}\cos \frac{\pi }{5} + \sin \frac{\pi }{{30}}\sin \frac{\pi }{5} = \cos \left( {\frac{\pi }{{30}} - \frac{\pi }{5}} \right) = \cos \left( { - \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP