Câu hỏi:

19/05/2025 108

Cho phương trình \(\cos 5x = \cos \left( {x + \frac{\pi }{4}} \right)\). Tìm số nghiệm thuộc đoạn \(\left[ { - 2024;2024} \right]\) của phương trình đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có cos5x=cosx+π45x=x+π4+k2π5x=xπ4+k2π4x=π4+k2π6x=π4+k2πx=π16+kπ2x=π24+kπ3k

+ Với nghiệm \(x = \frac{\pi }{{16}} + k\frac{\pi }{2}\) ta có: \( - 2024 \le \frac{\pi }{{16}} + k\frac{\pi }{2} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1288,6 \le k \le 1288,4\\k \in \mathbb{Z}\end{array} \right.\).

Suy ra có 2577 nghiệm thoả mãn.

+ Với nghiệm \(x = - \frac{\pi }{{24}} + k\frac{\pi }{3}\) ta có: \( - 2024 \le - \frac{\pi }{{24}} + k\frac{\pi }{3} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1932,7 \le k \le 1932,9\\k \in \mathbb{Z}\end{array} \right.\).

Suy ra có 3865 nghiệm thoả mãn.

Vậy có 6442 nghiệm thoả mãn.

Đáp án: 6442.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

+) \[\tan x = 2018\] có nghiệm.

+) \[\sin x = \pi \]  vô nghiệm do \(\pi  > 1\).

+) \[\cos x = \frac{{2017}}{{2018}}\] có nghiệm do \( - 1 < \frac{{2017}}{{2018}} < 1\).

+) \[\sin x + \cos x = \sqrt 2 \]\[ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 1\]\[ \Leftrightarrow x = \frac{\pi }{4} + k2\pi \], \[\left( {k \in \mathbb{Z}} \right)\].

Câu 2

Lời giải

Đáp án đúng là: A

Ta có \[\cos \frac{\pi }{{30}}\cos \frac{\pi }{5} + \sin \frac{\pi }{{30}}\sin \frac{\pi }{5} = \cos \left( {\frac{\pi }{{30}} - \frac{\pi }{5}} \right) = \cos \left( { - \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}.\]