Một vận động viên bắn súng nằm trên mặt đất để gắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất \(25\,\,\left( {\rm{m}} \right)\) tại một góc ngắm (góc hợp bởi phương ngắm với phương ngang). Nếu giảm góc ngắm đi một nửa thì vận động viên bắn trúng mục tiêu cách mặt đất \(10\,\,\left( {\rm{m}} \right)\). Khoảng cách từ vận động viên đến bức tường bằng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Một vận động viên bắn súng nằm trên mặt đất để gắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất \(25\,\,\left( {\rm{m}} \right)\) tại một góc ngắm (góc hợp bởi phương ngắm với phương ngang). Nếu giảm góc ngắm đi một nửa thì vận động viên bắn trúng mục tiêu cách mặt đất \(10\,\,\left( {\rm{m}} \right)\). Khoảng cách từ vận động viên đến bức tường bằng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Quảng cáo
Trả lời:

Gọi \(d\) là khoảng cách từ vận động viên đến bức tường, \(\alpha \) là góc ngắm lúc đầu của vận động viên.
Ta có \(\tan \alpha = \frac{{25}}{d}\); \(\tan \frac{\alpha }{2} = \frac{{10}}{d}\).
Công thức nhân đôi:
\(\tan \alpha = \frac{{2\tan \frac{\alpha }{2}}}{{1 - {{\tan }^2}\frac{\alpha }{2}}} \Rightarrow \frac{{25}}{d} = \frac{{\frac{{20}}{d}}}{{1 - \frac{{100}}{{{d^2}}}}}\)\( \Leftrightarrow \frac{{25}}{d} = \frac{{20d}}{{{d^2} - 100}}\)\( \Leftrightarrow {d^2} = 500\)\( \Leftrightarrow d = 10\sqrt 5 \simeq 22,4\,\,\left( {\rm{m}} \right)\).
Đáp án: 22,4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có
+ Với nghiệm \(x = \frac{\pi }{{16}} + k\frac{\pi }{2}\) ta có: \( - 2024 \le \frac{\pi }{{16}} + k\frac{\pi }{2} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1288,6 \le k \le 1288,4\\k \in \mathbb{Z}\end{array} \right.\).
Suy ra có 2577 nghiệm thoả mãn.
+ Với nghiệm \(x = - \frac{\pi }{{24}} + k\frac{\pi }{3}\) ta có: \( - 2024 \le - \frac{\pi }{{24}} + k\frac{\pi }{3} \le 2024 \Leftrightarrow \left\{ \begin{array}{l} - 1932,7 \le k \le 1932,9\\k \in \mathbb{Z}\end{array} \right.\).
Suy ra có 3865 nghiệm thoả mãn.
Vậy có 6442 nghiệm thoả mãn.
Đáp án: 6442.
Lời giải
Ta có \(h = \left| x \right| = \left| {1,5\cos \left( {\frac{{t\pi }}{4}} \right)} \right| \le 1,5\).
Vật ở xa vị trí cân bằng nhất nghĩa là \(h = 1,5\,\;{\rm{m}}\).
Khi đó, \(\cos \left( {\frac{{t\pi }}{4}} \right) = \pm 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{{t\pi }}{4} = k2\pi }\\{\frac{{t\pi }}{4} = \pi + k2\pi }\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 8k}\\{t = 4 + 8k}\end{array}\left( {k \in \mathbb{Z}} \right)} \right.} \right.\).
Vậy trong 10 giây đầu tiên thì vật ở xa vị trí cân bằng nhất tại các thời điểm \(t = 0,t = 4,t = 8\) (giây).
Khi vật ở vị trí cân bằng thì \(x = 0 \Leftrightarrow 1,5\cos \left( {\frac{{t\pi }}{4}} \right) = 0 \Leftrightarrow \cos \left( {\frac{{t\pi }}{4}} \right) = 0\)
\( \Leftrightarrow \frac{{t\pi }}{4} = \frac{\pi }{2} + k\pi \Rightarrow t = 2 + 4k\,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy trong khoảng từ 0 đến 20 giây thì vật ở vị trí cân bằng tại các thời điểm \(t = 2,\,t = 6,\)\(t = 10,t = 14,t = 18\) (giây); tức là có 5 lần vật qua vị trí cân bằng.
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.