Câu hỏi:

19/08/2025 4,036 Lưu

Trong lần đầu tiên nuôi gà, một trang trại do thiếu kinh nghiệm nên dự tính lượng thức ăn cho gà hằng ngày là không đổi và đã dự trữ thức ăn đủ dùng trong \[50\] ngày. Nhưng thực tế, theo sự phát triển của gà, để đảm bảo chất lượng thì kể từ ngày thứ 2 trở đi lượng thức ăn nuôi gà mỗi ngày của trang trại đã tăng thêm \[1\% \] so với ngày trước đó. Hỏi lượng thức ăn mà trang trại dự trữ đủ dùng cho gà ăn tối đa bao nhiêu ngày mà vẫn đảm bảo chất lượng ăn mỗi ngày? (lấy kết quả số ngày là số nguyên).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(40\).

Gọi \(x\) là lượng thức ăn nuôi gà ngày đầu tiên của trang trại.

Lượng thức ăn mà trang trại dự trữ là \(50x\).

Gọi n là số ngày thực tế lượng thức ăn sẽ hết.

Lượng thức ăn dùng cho gà ăn sau \(n\) ngày là:

\(x + x \cdot {\left( {1 + 1\% } \right)^1} + x \cdot 1,{01^2} + ... + x{\left( {1,01} \right)^{n - 1}} = x \cdot \frac{{1,{{01}^n} - 1}}{{1,01 - 1}} = 100x\left( {1,{{01}^n} - 1} \right)\).

Ta có \(n\) là số nguyên lớn nhất thỏa mãn:

\(50x \ge 100x\left( {1,{{01}^n} - 1} \right) \Leftrightarrow \,1,{01^n} \le 1,5 \Leftrightarrow n \le {\log _{1,01}}1,5 \approx 40,75\).

Suy ra \(n = 40\) ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 0,36.

Gọi biến cố \(A\): “Ít nhất một trong hai người đó gọi đúng số điện thoại đã quên mà không phải thử quá hai lần”.

Khi đó, biến cố \(\bar A\): “Cả hai người gọi thử cả 2 lần đều không đúng”.

Xác suất gọi sai cả 2 lần của mỗi người là \(\frac{9}{{10}} \cdot \frac{8}{9} = \frac{4}{5}\).

Hai người gọi điện là độc lập nên \[P\left( {\overline A } \right) = \frac{4}{5} \cdot \frac{4}{5} = \frac{{16}}{{25}}\].

Vậy \(P\left( A \right) = 1 - \frac{{16}}{{25}} = \frac{9}{{25}} = 0,36\).

Lời giải

Đáp án: 12,4.

v (ảnh 2) 

Chọn hệ trục tọa độ \(Oxy\) như hình vẽ với \(M\left( {0\,;\,m} \right)\,\,\left( {m < 0} \right)\) là đỉnh của parabol \(\left( {{P_1}} \right)\).

Khi đó \(\left( {{P_1}} \right):y = \frac{{7 - m}}{{36}}{x^2} + m\)\(\left( C \right):{x^2} + {y^2} = {m^2}.\)

Để \(\left( {{P_1}} \right),\,\,\left( C \right)\) có một điểm chung duy nhất thì phương trình sau có nghiệm duy nhất.

\({x^2} + {\left( {\frac{{7 - m}}{{36}}{x^2} + m} \right)^2} = {m^2} \Leftrightarrow {x^2}\left[ {{{\left( {\frac{{7 - m}}{{36}}} \right)}^2}{x^2} + \frac{{ - {m^2} + 7m + 18}}{{18}}} \right] = 0\).

\({\rm{YCBT}} \Leftrightarrow - {m^2} + 7m + 18 \ge 0 \Leftrightarrow - 2 \le m \le 9\). Mà \(m < 0\) nên \( - 2 \le m < 0\).

Khi đó, đường tròn \(\left( C \right)\)diện tích lớn nhất khi \(\left( C \right)\) bán kính lớn nhất, điều này xảy ra khi và chỉ khi \(m = - 2 \Rightarrow r = 2.\)

Hoành độ giao điểm của \(\left( {{P_1}} \right):y = \frac{1}{4}{x^2} - 2\) và trục hoành là \(x = \pm 2\sqrt 2 \).

Diện tích phần lát gạch là \(S = 4\int\limits_{2\sqrt 2 }^6 {\left( {\frac{1}{4}{x^2} - 2} \right){\rm{d}}x} + \pi {r^2} = \frac{{72 + 32\sqrt 2 }}{3} + 4\pi \).

Số tiền lát gạch là: \(240S \approx 12396,32\) (nghìn đồng) \( \approx 12,4\) (triệu đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP