Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thoả mãn \(\int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x = 2\).
a) \(\int\limits_1^3 {3f\left( x \right)} \,{\rm{d}}x = 6\).
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và thoả mãn \(\int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x = 2\).
a) \(\int\limits_1^3 {3f\left( x \right)} \,{\rm{d}}x = 6\).
Quảng cáo
Trả lời:
a) Đúng. Ta có \(\int\limits_1^3 {3f\left( x \right)} \,{\rm{d}}x = 3\int\limits_1^3 {\left( x \right)} \,{\rm{d}}x = 3 \cdot 2 = 6\).
Câu hỏi cùng đoạn
Câu 2:
b) Nếu \(\int\limits_2^3 {f\left( x \right)} \,{\rm{d}}x = - 1\) thì \(\int\limits_1^2 {f\left( x \right)} \,{\rm{d}}x = 1\).
b) Nếu \(\int\limits_2^3 {f\left( x \right)} \,{\rm{d}}x = - 1\) thì \(\int\limits_1^2 {f\left( x \right)} \,{\rm{d}}x = 1\).
Lời giải của GV VietJack
b) Sai. Nếu \(\int\limits_2^3 {f\left( x \right)} \,{\rm{d}}x = - 1\) thì \(\int\limits_1^2 {f\left( x \right)} \,{\rm{d}}x = \int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x - \int\limits_2^3 {f\left( x \right)} \,{\rm{d}}x = 2 - \left( { - 1} \right) = 3\).
Câu 3:
c) Nếu \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {1;3} \right]\) thoả mãn \(F\left( 1 \right) = 3\) thì \(F\left( 3 \right) = 1\).
c) Nếu \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {1;3} \right]\) thoả mãn \(F\left( 1 \right) = 3\) thì \(F\left( 3 \right) = 1\).
Lời giải của GV VietJack
c) Sai. Nếu \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {1;3} \right]\) thoả mãn \(F\left( 1 \right) = 3\) thì
\(2 = \int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x = F\left( 3 \right) - F\left( 1 \right) \Rightarrow F\left( 3 \right) = 2 + F\left( 1 \right) = 2 + 3 = 5\).
Câu 4:
d) \(\int\limits_1^3 {\frac{{xf\left( x \right) + {x^2} - 1}}{x}} \,{\rm{d}}x = a + b\ln 3\;\,\left( {a \in \mathbb{R},b \in \mathbb{R}} \right)\). Ta có \(a + b = 5\).
d) \(\int\limits_1^3 {\frac{{xf\left( x \right) + {x^2} - 1}}{x}} \,{\rm{d}}x = a + b\ln 3\;\,\left( {a \in \mathbb{R},b \in \mathbb{R}} \right)\). Ta có \(a + b = 5\).
Lời giải của GV VietJack
d) Đúng. Ta có \(\int\limits_1^3 {\frac{{xf\left( x \right) + {x^2} - 1}}{x}} \,{\rm{d}}x = \int\limits_1^3 {\left[ {f\left( x \right) + x - \frac{1}{x}} \right]} \,{\rm{d}}x = \int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x + \int\limits_1^3 x {\rm{d}}x - \int\limits_1^3 {\frac{1}{x}} \,{\rm{d}}x\)
\( = 2 + \left. {\frac{{{x^2}}}{2}} \right|_1^3 - \left. {\ln \left| x \right|} \right|_1^3 = 2 + \frac{9}{2} - \frac{1}{2} - \ln 3 + \ln 1 = 6 - \ln 3 = a + b\ln 3\).
Suy ra \(a = 6;b = - 1 \Rightarrow a + b = 5\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 8.
Ta có \(AB = 2\sqrt 2 \Rightarrow AC = 4.\) Chọn hệ trục \(Oxy\) như hình vẽ.
Khi đó, mặt cắt tại \(x = t\) là hình vuông có diện tích \(S\left( t \right) = \frac{1}{2}{\left( {2\sqrt {2t} } \right)^2} = 4t\).
Vậy thể tích của lều là \(V = \int\limits_0^2 {S\left( t \right){\rm{d}}t} = \int\limits_0^2 {4t{\rm{d}}t} = \left. {2{t^2}} \right|_0^2 = 8{\rm{ }}\left( {{{\rm{m}}^3}} \right).\)
Lời giải
Đáp án: 12.
Lợi nhận hộ thu được trong một ngày là
\(L\left( x \right) = 300x - \left( {\frac{{23}}{{36}}{x^3} + {x^2} + 200} \right) = - \frac{{23}}{{36}}{x^3} - {x^2} + 300x - 200\).
\(L'\left( x \right) = - \frac{{23}}{{36}} \cdot 3{x^2} - 2x + 300 = 0 \Leftrightarrow - \frac{{23}}{{12}}{x^2} - 2x + 300 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12\,\,\,\,\,\,\,\,\,\left( {{\rm{tm}}} \right)\\x = - \frac{{300}}{{23}}\,\,\,\left( {\rm{L}} \right)\end{array} \right.\).
Ta có \(L\left( 1 \right) = \frac{{3541}}{{36}};\,\,L\left( {12} \right) = 2152;\,\,L\left( {20} \right) = \frac{{2600}}{9}\). Suy ra \(\mathop {\max }\limits_{\left[ {1\,;\,20} \right]} L\left( x \right) = L\left( {12} \right) = 2152\).
Vậy để lợi nhuận đạt tối đa thì mỗi ngày hộ cần sản xuất 12 mét vải lụa.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.