Câu hỏi:

24/05/2025 443

Trong cuộc gặp mặt dặn dò trước khi lên đường tham gia kì thi học sinh giỏi, có 10 bạn trong đội tuyển gồm 2 bạn đến từ lớp 12A, 3 bạn từ lớp 12B, 5 bạn còn lại đến từ 5 lớp khác (mỗi lớp một bạn). Thầy giáo xếp ngẫu nhiên các bạn kể trên ngồi vào một bàn dài có 10 ghế mà mỗi bên có 5 ghế xếp đối diện nhau. Tính xác suất để không có học sinh nào cùng lớp ngồi đối diện nhau (làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: \(0,6\).

Số cách xếp 10 bạn học sinh trong đội tuyển thi HSG vào một bàn dài mà mỗi bên có 5 ghế đối diện nhau là \(10! \Rightarrow n\left( \Omega  \right) = 10!\).

Xét các biến cố \(A\) : “Không có học sinh nào cùng lớp ngồi đối diện nhau”.

                      \(\bar A\) : “Có học sinh cùng lớp ngồi đối diện nhau”.

                      \({A_1}\) : “Học sinh lớp 12A ngồi đối diện nhau”.

                        \({A_2}\) : “Học sinh lớp 12B ngồi đối diện nhau”.

                     \({A_1} \cap {A_2}\): “Học sinh 12A ngồi đối diện nhau và học sinh 12B ngồi đối diện nhau”.

\( \Rightarrow \overline A  = {A_1} \cup {A_2} \Rightarrow n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right)\).

Sắp xếp 2 học sinh lớp 12A ngồi vào hai ghế đối diện nhau, hoán đổi vị trí của 2 học sinh, sau đó sắp xếp 8 học sinh còn lại \( \Rightarrow n\left( {{A_1}} \right) = C_5^1 \cdot 2!\, \cdot 8!\).

Từ 3 học sinh lớp 12B, chọn ra 2 học sinh sắp xếp 2 học sinh này ngồi vào hai ghế đối diện, sau đó sắp xếp 8 học sinh còn lại \( \Rightarrow n\left( {{A_2}} \right) = A_3^2 \cdot C_5^1 \cdot 8!\).

Chọn vị trí để sắp xếp 2 học sinh lớp 12A vào ngồi hai ghế đối diện, tiếp tục chọn vị trí xếp tiếp 2 học sinh (chọn 2 trong 3 học sinh của lớp 12B) lớp 12B ngồi vào hai ghế đối diện, cuối cùng sắp xếp 6 học sinh còn lại \( \Rightarrow n\left( {{A_1} \cap {A_2}} \right) = 5 \cdot 2!\, \cdot 4 \cdot A_3^2 \cdot 6!\).

\( \Rightarrow n\left( {\overline A } \right) = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) - n\left( {{A_1} \cap {A_2}} \right) = 1\,440\,000\).

\( \Rightarrow n\left( A \right) = n\left( \Omega  \right) - n\left( {\overline A } \right) = 2188800 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{38}}{{63}} \approx 0,6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 5196.

c (ảnh 1) 

Gọi độ dài 3 cạnh \[AB,AD,AA'\] lần lượt là \[x,y,z\].

Thể tích của khối \[ABCD.A'B'C'D'\] là: \[V = xyz\].

Kẻ \(AK \bot BD\,\,\left( {K \in BD} \right)\), \(AH \bot A'K\,\,\left( {H \in A'K} \right)\). Ta chứng minh được \(AH \bot \left( {A'BD} \right)\).

Khoảng cách từ\[A\] tới mặt phẳng \[\left( {A'BD} \right)\] bằng \[AH = 10\] nên ta có:

\[\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{{A'}^2}}} = \frac{1}{{{{10}^2}}}\] hay \[\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = \frac{1}{{100}}\].

Ta cần tìm GTNN của biểu thức \[V = xyz\].

Áp dụng bất đẳng thức Cauchy cho ba số không âm \[\frac{1}{{{x^2}}}\], \[\frac{1}{{{y^2}}}\], \[\frac{1}{{{z^2}}}\] ta được:

\[\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} \ge 3 \cdot \sqrt[3]{{\frac{1}{{{x^2}}} \cdot \frac{1}{{{y^2}}} \cdot \frac{1}{{{z^2}}}}}\]\[ \Rightarrow \frac{1}{{100}} \ge 3 \cdot \frac{1}{{\sqrt[3]{{{x^2} \cdot {y^2} \cdot {z^2}}}}}\]\[ \Rightarrow x \cdot y \cdot z \ge \sqrt {{{300}^3}} \approx 5196\].

Dấu “=” xảy ra khi và chỉ khi \[x = y = z = 10\sqrt 3 \] (TM).

Vậy thể tích nhỏ nhất của khối hộp \[ABCD.A'B'C'D'\] là 5196 (đơn vị thể tích).

Lời giải

Đáp án: 50.

Ta có giá bán cho mỗi tấn sản phẩm là \(p\left( x \right) = 90 - 0,01{x^2}\) (triệu đồng).

Nên bán \(x\) tấn sản phẩm thu được \(\left( {90 - 0,01{x^2}} \right)x\) (triệu đồng). Điều kiện \(0 < x \le 100\).

Lợi nhuận hàng tháng của nhà máy \(A\) khi sản xuất và bán \(x\) tấn sản phẩm cho nhà máy \(B\) là:

\(L\left( x \right) = \left( {90 - 0,01{x^2}} \right)x \cdot 90\%  - \frac{1}{2}\left( {200 + 27x} \right)\) (triệu đồng).

Hay \(L\left( x \right) =  - 0,009{x^3} + 67,5x - 100\).

Xét hàm số \(L\left( x \right) =  - 0,009{x^3} + 67,5x - 100\) trên nửa khoảng \(\left( {0;100} \right]\):

\(L'\left( x \right) =  - 0,027{x^2} + 67,5\);

\(L'\left( x \right) = 0 \Leftrightarrow  - 0,027{x^2} + 67,5 = 0 \Leftrightarrow {x^2} = 2500 \Rightarrow x = 50\).

Bảng biến thiên:

c (ảnh 1)

Như vậy nhà máy \(A\) cần sản xuất và bán \(50\) tấn sản phẩm cho nhà máy \(B\) mỗi tháng để thu được lợi nhuận cao nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP