Câu hỏi:

26/05/2025 83

Cho phương trình x2 + mx – 2 = 0 (với m là tham số) có hai nghiệm x1, x2. Phương trình bậc hai có hai nghiệm là nghịch đảo nghiệm của phương trình đã cho là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Phương trình x2 + mx – 2 = 0 có ∆ = m2 – 4.1.(–2) = m2 + 8 > 0 với mọi m.

Do đó, phương trình đã cho có hai nghiệm phân biệt x1, x2 với mọi m.

Theo định lí Viète, ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = - m\\{x_1}{x_2} = - 2\end{array} \right..\)

Ta có: \(S = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{ - m}}{{ - 2}} = \frac{m}{2}.\)

Và \(P = \frac{1}{{{x_1}}} \cdot \frac{1}{{{x_2}}} = \frac{1}{{{x_1}{x_2}}} = \frac{1}{{ - 2}} = \frac{{ - 1}}{2}.\)

Khi đó, \[{S^2} - 4P = {\left( {\frac{m}{2}} \right)^2} - 4 \cdot \frac{{ - 1}}{2} = \frac{{{m^2}}}{4} + 2 > 0\] với mọi m.

Do đó, với mọi m thì ta có \(\frac{1}{{{x_1}}}\) và \(\frac{1}{{{x_2}}}\) là hai nghiệm của phương trình bậc hai \[{X^2} - \frac{m}{2}X + \frac{{ - 1}}{2} = 0\] hay 2X2 – mX – 1 = 0.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình 3x2 + 5x – m = 0 (với m là tham số) có hai nghiệm x1, x2. Phương trình bậc hai có hai nghiệm là \(\frac{{{x_1}}}{{{x_2} + 1}}\) và \(\frac{{{x_2}}}{{{x_1} + 1}}\) là

Xem đáp án » 26/05/2025 44

Câu 2:

Điều kiện tồn tại hai số thực có tổng là S, tích bằng P là

Xem đáp án » 26/05/2025 29

Câu 3:

Hai số x1, x2 có tổng là S và tích là P (với S2 – 4P ≥ 0). Khi đó, x1, x2 là các nghiệm của phương trình

Xem đáp án » 26/05/2025 29

Câu 4:

Cho hai số x, y thỏa mãn x + y = –5 và xy = 6 với x < y. Khi đó giá trị của biểu thức A = x2

– 2y + y2 bằng

Xem đáp án » 26/05/2025 29

Câu 5:

Cho phương trình x2 + 5x – 3m = 0 (với m là tham số) có hai nghiệm x1, x2. Phương trình bậc hai có hai nghiệm là \(\frac{2}{{x_1^2}}\) và \(\frac{2}{{x_2^2}}\)là

Xem đáp án » 26/05/2025 24

Câu 6:

Khi \(u = 2 + \sqrt 3 \) và \(v = 2 - \sqrt 3 \) thì u, v là hai nghiệm của phương trình

Xem đáp án » 26/05/2025 18
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay