Câu hỏi:
26/05/2025 99Cho phương trình 3x2 + 5x – m = 0 (với m là tham số) có hai nghiệm x1, x2. Phương trình bậc hai có hai nghiệm là \(\frac{{{x_1}}}{{{x_2} + 1}}\) và \(\frac{{{x_2}}}{{{x_1} + 1}}\) là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Phương trình 3x2 + 5x – m = 0 có ∆ = 52 – 4.3.(–m) = 25 + 12m.
Để phương trình đã cho có nghiệm thì ∆ ≥ 0, tức là 25 + 12m ≥ 0 hay \(m \ge - \frac{{25}}{{12}}.\)
Khi đó, phương trình đã cho có hai nghiệm x1, x2, theo định lí Viète, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{ - 5}}{3}\\{x_1}{x_2} = \frac{{ - m}}{3}\end{array} \right..\)
Ta có: \(S = \frac{{{x_1}}}{{{x_2} + 1}} + \frac{{{x_2}}}{{{x_1} + 1}} = \frac{{{x_1}\left( {{x_1} + 1} \right) + {x_2}\left( {{x_2} + 1} \right)}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}\)
\( = \frac{{x_1^2 + x_2^2 + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\)\( = \frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2} + {x_1} + {x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\)
\( = \frac{{{{\left( {\frac{{ - 5}}{3}} \right)}^2} - 2 \cdot \frac{{ - m}}{3} + \frac{{ - 5}}{3}}}{{\frac{{ - m}}{3} + \frac{{ - 5}}{3} + 1}} = \frac{{\frac{{2m}}{3} + \frac{{10}}{9}}}{{\frac{{ - m}}{3} - \frac{2}{3}}} = - \frac{{6m + 10}}{{3m + 6}}\) (với m ≠ –2).
Và \(P = \frac{{{x_1}}}{{{x_2} + 1}} \cdot \frac{{{x_2}}}{{{x_1} + 1}} = \frac{{{x_1}{x_2}}}{{\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right)}}\)
\( = \frac{{{x_1}{x_2}}}{{{x_1}{x_2} + {x_1} + {x_2} + 1}}\)
\( = \frac{{\frac{{ - m}}{3}}}{{\frac{{ - m}}{3} + \frac{{ - 5}}{3} + 1}} = \frac{{\frac{{ - m}}{3}}}{{\frac{{ - m}}{3} - \frac{2}{3}}} = \frac{m}{{m + 2}}\) (với m ≠ –2).
Khi đó, \[{S^2} - 4P = {\left( { - \frac{{6m + 10}}{{3m + 6}}} \right)^2} - 4 \cdot \frac{m}{{m + 2}}\]
\[ = \frac{{{{\left( {6m + 10} \right)}^2} - 4m \cdot 9\left( {m + 2} \right)}}{{9{{\left( {m + 2} \right)}^2}}}\]
\[ = \frac{{48m + 100}}{{9{{\left( {m + 2} \right)}^2}}} \ge 0\] với mọi m ≠ –2 và \(m \ge - \frac{{25}}{{12}}.\)
Do đó, với điều kiện m ≠ –2 và \(m \ge - \frac{{25}}{{12}}\) thì ta có \(\frac{{{x_1}}}{{{x_2} + 1}}\) và \(\frac{{{x_2}}}{{{x_1} + 1}}\) là hai nghiệm của phương trình bậc hai \[{X^2} - \left( { - \frac{{6m + 10}}{{3m + 6}}} \right)X + \frac{m}{{m + 2}} = 0\] hay (3m + 6)X2 + (6m + 10)X + 3m = 0.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Phương trình x2 + mx – 2 = 0 có ∆ = m2 – 4.1.(–2) = m2 + 8 > 0 với mọi m.
Do đó, phương trình đã cho có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète, ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = - m\\{x_1}{x_2} = - 2\end{array} \right..\)
Ta có: \(S = \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = \frac{{{x_1} + {x_2}}}{{{x_1}{x_2}}} = \frac{{ - m}}{{ - 2}} = \frac{m}{2}.\)
Và \(P = \frac{1}{{{x_1}}} \cdot \frac{1}{{{x_2}}} = \frac{1}{{{x_1}{x_2}}} = \frac{1}{{ - 2}} = \frac{{ - 1}}{2}.\)
Khi đó, \[{S^2} - 4P = {\left( {\frac{m}{2}} \right)^2} - 4 \cdot \frac{{ - 1}}{2} = \frac{{{m^2}}}{4} + 2 > 0\] với mọi m.
Do đó, với mọi m thì ta có \(\frac{1}{{{x_1}}}\) và \(\frac{1}{{{x_2}}}\) là hai nghiệm của phương trình bậc hai \[{X^2} - \frac{m}{2}X + \frac{{ - 1}}{2} = 0\] hay 2X2 – mX – 1 = 0.
Lời giải
Đáp án đúng là: B
Ta có: (x + y)2 – 4.xy = (–5)2 – 4.6 = 1 > 0 nên x và y là hai nghiệm của phương trình:
X2 + 5X + 6 = 0.
Phương trình trên có ∆ = 52 – 4.1.6 = 1 > 0 và \(\sqrt \Delta = \sqrt 1 = 1.\)
Do đó phương trình có hai nghiệm phân biệt là: \({x_1} = \frac{{ - 5 - 1}}{{2 \cdot 1}} = - 3;\,\,{x_2} = \frac{{ - 5 + 1}}{{2 \cdot 1}} = - 2.\)
Như vậy hai số cần tìm trong trường hợp này là x = –3; y = –2 hoặc x = –2; y = –3.
Mà x < y nên ta chọn x = –3; y = –2.
Khi đó, A = x2 – 2y + y2 = (–3)2 – 2.(–2) + (–2)2 = 17.
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.