Câu hỏi:

30/05/2025 33

Cho hàm số \(f\left( x \right) = \sqrt {4{x^2} + ax + 1}  + bx;a,b \in \mathbb{R}\).

a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).

b) \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {4{x^2} + ax + 1}  + bx} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}}  + b} \right)} \right]\).

c) Khi b = 2 thì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = \frac{a}{4}\).

d) Biết rằng \(\mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {4{x^2} + ax + 1}  + bx} \right) =  - 1\). Khi đó biểu thức P = a2 – 2b3 có giá trị bằng 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).

b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right]\).

c) Khi b = 2 thì \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + 2x} \right)\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ax + 1}}{{\sqrt {4{x^2} + ax + 1} - 2x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{a + \frac{1}{x}}}{{ - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} - 2}}\)\( = - \frac{a}{4}\).

d) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right]\).

Nếu b ≠ 2: \(\mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right] = \left\{ \begin{array}{l} - \infty \;khi\;b > 2\\ + \infty \;khi\;b < 2\end{array} \right.\) mâu thuẫn với giải thiết.

Vậy b = 2.

Khi đó \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = - \frac{a}{4}\).

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = - 1\) nên \( - \frac{a}{4} = - 1 \Rightarrow a = 4\).

Vậy a = 4; b = 2. Do đó P = a2 – 2b3 = 0.

Đáp án: a) Đúng; b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x - 2} \right) = - 1\).

b) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 2}}{{x + 1}} = - \frac{1}{2}\).

c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^3} - {x^2} + x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 2}}{{{x^2} + 1}} = - \frac{1}{2} < 0\).

d) Để \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = 2\) thì ax + b có nghiệm bằng 1 Û a + b = 0 Û b = −a.

Khi đó \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)\left( {x - 1} \right)}}{{a\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{x - 2}}{a} = - \frac{1}{a} = 2\) \( \Leftrightarrow a = - \frac{1}{2} \Rightarrow b = \frac{1}{2}\).

Suy ra \(a + 3b = - \frac{1}{2} + 3.\frac{1}{2} = 1\).

Đáp án: a) Đúng; b) Sai;   c) Sai;   d) Đúng.

Lời giải

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{7ax + 5}}{{\sqrt {{x^2} + 7ax + 5} - x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {7a + \frac{5}{x}} \right)}}{{x\left( { - \sqrt {1 + \frac{{7a}}{x} + \frac{5}{{{x^2}}}} - 1} \right)}} = - \frac{{7a}}{2}\).

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = - 3\) nên \( - \frac{{7a}}{2} = - 3\)\( \Leftrightarrow a = \frac{6}{7} \approx 0,86\).

Trả lời: 0,86.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Giới hạn \(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{x + 2}}{{x - 3}}\) bằng 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tính giới hạn của hàm số \[\mathop {\lim }\limits_{{\rm{x}} \to \infty } \frac{{{{\rm{x}}^3} + 3{{\rm{x}}^2} + 4}}{{2{{\rm{x}}^3}}}\] 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Chọn đáp án sai:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay