Câu hỏi:
30/05/2025 12Cho hàm số \(f\left( x \right) = \sqrt {4{x^2} + ax + 1} + bx;a,b \in \mathbb{R}\).
a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right]\).
c) Khi b = 2 thì \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \frac{a}{4}\).
d) Biết rằng \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = - 1\). Khi đó biểu thức P = a2 – 2b3 có giá trị bằng 0.
Quảng cáo
Trả lời:
a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right]\).
c) Khi b = 2 thì \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + 2x} \right)\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{ax + 1}}{{\sqrt {4{x^2} + ax + 1} - 2x}}\)\( = \mathop {\lim }\limits_{x \to - \infty } \frac{{a + \frac{1}{x}}}{{ - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} - 2}}\)\( = - \frac{a}{4}\).
d) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right]\).
Nếu b ≠ 2: \(\mathop {\lim }\limits_{x \to - \infty } \left[ {x\left( { - \sqrt {4 + \frac{a}{x} + \frac{1}{{{x^2}}}} + b} \right)} \right] = \left\{ \begin{array}{l} - \infty \;khi\;b > 2\\ + \infty \;khi\;b < 2\end{array} \right.\) mâu thuẫn với giải thiết.
Vậy b = 2.
Khi đó \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = - \frac{a}{4}\).
Mà \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {4{x^2} + ax + 1} + bx} \right) = - 1\) nên \( - \frac{a}{4} = - 1 \Rightarrow a = 4\).
Vậy a = 4; b = 2. Do đó P = a2 – 2b3 = 0.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 104
Đã bán 244
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
PHẦN II. TRẢ LỜI NGẮN
Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 7ax + 5} + x} \right) = - 3\) với a Î \(\mathbb{Q}\). Tìm giá trị của a (kết quả làm tròn đến hàng phần trăm).
Câu 2:
Cho hàm số f(x) = x2 – 3x + 2.
a) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{x - 1}} = - 1\).
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^2} - 1}} = \frac{1}{4}\).
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{{x^3} - {x^2} + x - 1}} > 0\).
d) Để \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right)}}{{ax + b}} = 2\) thì a + 3b = 1.
Câu 3:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1 + 2m\;khi\;\;x < 2\\\sqrt {x + 7} \;\;\;\;\;\;\;\;khi\;\;x \ge 2\end{array} \right.\) (m là tham số).
a) Khi m = −1 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\).
b) \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 5\).
c) Tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) khi m = −3.
d) \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 3\).
Câu 4:
Câu 5:
Câu 6:
Câu 7:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận