Câu hỏi:

30/05/2025 33

Cho hàm số \(f\left( x \right) = \frac{{2{x^2} - 5x + 2}}{{{x^2} - 4}}\).

a) Hàm số f(x) liên tục trên khoảng (3; +∞).

b) Hàm số f(x) liên tục tại x = −2.

c) Hàm số f(x) gián đoạn tại x = 2.

d) Nếu \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \frac{a}{b}\) với a, b Î ℤ; \(\frac{a}{b}\) tối giản thì a2 + b2 = 25.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Tập xác định ℝ\{±2}.

Do đó hàm số liên tục trên các khoảng (−∞; −2); (−2; 2) và (2; +∞).

Do đó hàm số f(x) liên tục trên khoảng (3; +∞).

b) Hàm số f(x) gián đoạn tại x = −2.

c) Hàm số f(x) gián đoạn tại x = 2.

d) \[\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{2x - 1}}{{x + 2}} = \frac{3}{4}\].

Suy ra a = 3; b = 4. Do đó a2 + b2 = 25.

Đáp án: a) Đúng;    b) Sai;    c) Đúng;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số liên tục tại x = 1 khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

Mà f(1) = n là số hữu hạn, suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) hữu hạn nên x = 1 là nghiệm của x3 + 8x + m = 0

Þ m = −9.

Khi đó \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + 8x - 9}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 9} \right)}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Suy ra n = 11. Vậy m + n = −9 + 11 = 2.

Trả lời: 2.

Câu 2

Lời giải

C

Theo định nghĩa hàm số liên tục trên đoạn \(\left[ {a;\,b} \right]\).

Chọn: \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\)\(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP