Câu hỏi:

19/08/2025 161 Lưu

Cho hàm số \(y = f\left( x \right) = \frac{{3x + 1}}{{x - 1}}\). Khi đó:

a) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) =  + \infty \).

b) \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 4\).

c) Hàm số y = f(x) liên tục tại điểm x0 = 1.

d) Hàm số y = f(x) liên tục trên các khoảng (−∞; 1) và (1; +∞).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3x + 1}}{{x - 1}} = + \infty \).

\(\mathop {\lim }\limits_{x \to {1^ + }} \left( {3x + 1} \right) = 4;\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 0\) mà x – 1 > 0 khi x → 1+.

b) \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{3 + \frac{1}{x}}}{{1 - \frac{1}{x}}} = 3\).

c) Tập xác định D = ℝ\{1}. Do đó hàm số y = f(x) gián đoạn tại điểm x0 = 1.

d) Hàm số y = f(x) liên tục trên các khoảng (−∞; 1) và (1; +∞).

Đáp án: a) Đúng;    b) Sai;    c) Sai;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hàm số liên tục tại x = 1 khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

Mà f(1) = n là số hữu hạn, suy ra \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\) hữu hạn nên x = 1 là nghiệm của x3 + 8x + m = 0

Þ m = −9.

Khi đó \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} + 8x - 9}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 9} \right)}}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} + x + 9} \right) = 11\).

Suy ra n = 11. Vậy m + n = −9 + 11 = 2.

Trả lời: 2.

Lời giải

a) Hàm số f(x) xác định trên ℝ.

b) Ta có \(\mathop {\lim }\limits_{x \to 45} \frac{{{x^2} - 2025}}{{x - 45}} = \mathop {\lim }\limits_{x \to 45} \left( {x + 45} \right) = 90\).

c) Ta có f(20) = 65.

Ta có \(\mathop {\lim }\limits_{x \to 20} \frac{{{x^2} - 2025}}{{x - 45}} = \mathop {\lim }\limits_{x \to 20} \left( {x + 45} \right) = 65 = f\left( {20} \right)\) nên f(x) liên tục tại x = 20.

d) Với x ≠ 45 thì \(f\left( x \right) = \frac{{{x^2} - 2025}}{{x - 45}}\) hàm số xác định trên khoảng (−∞; 45) và (45; +∞).

Suy ra hàm số liên tục trên các khoảng (−∞; 45) và (45; +∞).

Do đó hàm số liên tục trên ℝ khi hàm số liên tục tại x = 45 \( \Leftrightarrow \mathop {\lim }\limits_{x \to 45} f\left( x \right) = f\left( {45} \right)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to 45} \frac{{{x^2} - 2025}}{{x - 45}} = 2m + 4\)Û 90 = 2m + 4 Û m = 43.

Đáp án: a) Sai;    b) Đúng;    c) Đúng;    d) Sai.

Câu 3

A. (−2; −1).              
B. (−10; −2).            
C. (0; 1).
D. (−1; 0).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f\left( x \right) = \sqrt {x - 5} \).           
B. \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\).                           
C. f(x) = cotx + 3. 
D. \(f\left( x \right) = \frac{{{x^2} + 3}}{{2 - x}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).                        
B. \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\). 
C. \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).                                               
D. \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP