Câu hỏi:

30/05/2025 108

Tập nghiệm của bất phương trình \({5^{x - 1}} \ge {5^{{x^2} - x - 9}}\) là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

\({5^{x - 1}} \ge {5^{{x^2} - x - 9}} \Leftrightarrow x - 1 \ge {x^2} - x - 9 \Leftrightarrow {x^2} - 2x - 8 \le 0 \Leftrightarrow - 2 \le x \le 4\).

Vậy tập nghiệm của bất phương trình là \(\left[ { - 2;4} \right]\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

Điều kiện \(x \ne 0\).

\({\log _4}{x^2} - {\log _2}3 = 1 \Leftrightarrow \frac{1}{2}{\log _2}{x^2} = 1 + {\log _2}3 \Leftrightarrow {\log _2}{x^2} = 2.{\log _2}6 \Leftrightarrow {x^2} = {6^2}\)

Dó đó, tổng các nghiệm sẽ bằng \(0\).

Câu 2

Lời giải

C

\({4^{x + 1}} + {4^{x - 1}} = 272\)\( \Leftrightarrow {4.4^x} + \frac{{{4^x}}}{4} = 272\)\( \Leftrightarrow {4^x} = 64\)\( \Leftrightarrow x = 3\)

Vậy phương trình có tập nghiệm \[S = \left\{ 3 \right\}\].

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP