Câu hỏi:

30/05/2025 53

Cho hình chóp \(S.ABC\) có cạnh bên \(SA \bot (ABC)\) và đáy \(ABC\) là tam giác cân ở \(B\). Gọi \(H\)\(K\) lần lượt là trung điểm của \(AC\)\(SC\). Góc giữa hai đường thẳng \(BH,SC\)bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

S (ảnh 1)

Tam giác \(ABC\) cân tại \(B\) có đường trung tuyến \(BH\) nên \(BH \bot AC\). (1)

Mặt khác \(BH \bot SA\) (do \(SA \bot (ABC))\). (2)

Từ (1) và (2) suy ra \(BH \bot (SAC)\), mà \(SC \subset (SAC)\) nên \(BH \bot SC\).

Suy ra (BH, SC) = 90°.

Trả lời: 90.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xác định a (kết quả làm tròn đến hàng phần mười). (ảnh 1)

Vì SA ^ (ABCD) Þ SA ^ AD Þ DSAD vuông tại A

Do đó \(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \).

DADC vuông cân tại D, suy ra AC = \(\sqrt {A{D^2} + C{D^2}} = \sqrt 2 \).

Vì SA ^ (ABCD) Þ SA ^ AC Þ DSAC vuông tại A.

\(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{2^2} + {{\left( {\sqrt 2 } \right)}^2}} = \sqrt 6 \).

Do đó \(\frac{{SC}}{{SD}} = \frac{{\sqrt 6 }}{{\sqrt 5 }} \approx 1,1\).

Trả lời: 1,1.

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ^ (ABCD). Khi đó: (ảnh 1)

a) Vì SA ^ (ABCD) nên SA ^ BC mà BC ^ AB suy ra BC ^ (SAB).

b) Vì SA ^ (ABCD) nên SA ^ CD mà CD ^ AD suy ra CD ^ (SAD).

c) Giả sử AC ^ (SBD) Þ AC ^ SB mà SA ^ AC nên AC ^ (SAB) Þ AC ^ AB (vô lí).

d) Vì SA ^ (ABCD) nên SA ^ BD mà BD ^ AC nên BD ^ (SAC).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;    d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP