Câu hỏi:

31/05/2025 48

Cho hình chóp \(SABC\)có đáy \(ABC\) là tam giác đều cạnh \(2a\), \(H\) là hình chiếu của \(S\) lên \(AB\), tam giác \(SAB\) vuông cân tại \(S\), \(SH\) vuông góc với \(\left( {ABC} \right)\). Góc giữa cạnh \(SC\) và mặt đáy bằng:     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

V (ảnh 1)

Do tam giác \(SAB\) vuông cân tại \(S\)nên \(H\)là trung điểm của \(AB\) và ta có \(SH = \frac{1}{2}AB = a\).

Góc giữa cạnh \(SC\) và mặt đáy là góc \(\widehat {SCH}\).

Xét tam giác vuông \(HSC\)\(HC = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \), \(SH = a\) nên \(\tan \widehat {SCH} = \frac{{HS}}{{HC}} = \frac{1}{{\sqrt 3 }}\)

\( \Rightarrow \widehat {SCH} = 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

V (ảnh 1)

\(SA \bot ABCD\)nên góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)là góc \(\widehat {SDA}\).

Trong tam giác vuông \(SDA\) ta có: \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \Rightarrow \widehat {SDA} = 60^\circ \).

Lời giải

A

V (ảnh 1)

Do \(SA \bot \left( {ABCD} \right)\) nên góc giữa đường thẳng \(SB\) và mặt phẳng đáy bằng góc \(\widehat {SBA}\).

Ta có \(\cos \widehat {SBA} = \frac{{AB}}{{SB}}\)\( = \frac{1}{2}\)\( \Rightarrow \widehat {SBA} = 60^\circ \).

Vậy góc giữa đường thẳng \(SB\) và và mặt phẳng đáy bằng bằng \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP